Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 787–797 | Cite as

Brain-like large scale cognitive networks and dynamics

  • Francesca Bertacchini
  • Eleonora Bilotta
  • Maria Carmela Lombardo
  • Marco Sammartino
  • Pietro Pantano
Regular Article
  • 22 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming brain dynamics, using different types of networks, which correspond to diverse segmentation methods and brain atlases. From the simulations, we observe that the behavior of these systems is completely different from random and/or artificially generated networks. The emergence of stable structures, which might correspond to brain cognitive circuits, has also been detected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Sporns et al., Networks of the brain (MIT Press, Cambridge, MA, USA, 2011) Google Scholar
  2. 2.
    O. Sporns et al., Discovering the human connectome (MIT Press, Cambridge, MA, USA, 2012) Google Scholar
  3. 3.
    W. Singer et al., Neuron 24, 49 (1999) CrossRefGoogle Scholar
  4. 4.
    A.R. Luria et al., Higher cortical functions in man (Basic Books, New York, NY, USA, 1966) Google Scholar
  5. 5.
    M.M. Mesulam et al., Brain 121, 1013 (1998) CrossRefGoogle Scholar
  6. 6.
    D.R. Gitelman, A.C. Nobre, T.B. Parrish, K.S. LaBar, Y.H. Kim, J.R. Meyer, M.M. Mesulam, Brain 122, 1093 (1999) CrossRefGoogle Scholar
  7. 7.
    S.L. Bressler, V. Menon, Trends Cognit. Sci. 14, 277 (2010) CrossRefGoogle Scholar
  8. 8.
    G. Buzsaki et al., Rhythms of the brain (Oxford University Press, New York, NY, USA, 2006) Google Scholar
  9. 9.
    A.K. Engel, P.R. Roelfsema, P. Fries, M. Brecht, W. Singer, Cereb. Cortex 7, 70 (1997) CrossRefGoogle Scholar
  10. 10.
    W.M. Freeman et al., Mass Action in the nervous system (Academic Press, New York, NY, USA, 1975) Google Scholar
  11. 11.
    M.A. Arbib, P. Erdi, J. Szentagothai, Neural organization: structure, function, and dynamics (MIT Press, Cambridge, MA, USA, 1998) Google Scholar
  12. 12.
    C. Koch, J.L. Davis, Large-scale neuronal theories of the brain (MIT Press, Cambridge, MA, USA, 1994) Google Scholar
  13. 13.
    S.L. Bressler, J.A. Kelso, Trends Cognit. Sci. 5, 26 (2001) CrossRefGoogle Scholar
  14. 14.
    M.M. Mesulam et al., Ann. Neurol. 28, 597 (1990) CrossRefGoogle Scholar
  15. 15.
    S.L. Bressler et al., Brain Res. Rev. 20, 288 (1995) CrossRefGoogle Scholar
  16. 16.
    A.R. McIntosh et al., Neural Netw. 13, 861 (2000) CrossRefGoogle Scholar
  17. 17.
    J.M. Fuster et al., Cortex and mind: unifying cognition (Oxford University Press, New York, NY, USA, 2003) Google Scholar
  18. 18.
    O. Sporns, D.R. Chialvo, M. Kaiser, C.C. Hilgetag, Trends Cognit. Sci. 8, 418 (2004) CrossRefGoogle Scholar
  19. 19.
    C. Sauvage, N., De Greef, M. Manto, P. Jissendi, C. Nioche, C. Habas, J. Neuroradiol. 42, 115 (2015) CrossRefGoogle Scholar
  20. 20.
    S. Eickhoff, T.E. Nichols, J.D. Van Horn, J.A. Turner, NeuroImage 124, 1065 (2016) CrossRefGoogle Scholar
  21. 21.
    V. Volman, M. Perc, M. Bazhenov, PLoS One 6, e20572 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    D. Fan, Q. Wang, M. Perc, Sci. Rep., 5, 12618 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Europhys. Lett. 118, 10001 (2017) ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Hipp, A.K. Engel, M. Siegel, Neuron 69, 387 (2011) CrossRefGoogle Scholar
  25. 25.
    G. Deco, V.K. Jirsa, P.A. Robinson, M. Breakspear, K. Friston, PLoS Comput. Biol. 4, e1000092 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Kauffman et al., J. Theor. Biol. 22, 437 (1969) CrossRefGoogle Scholar
  27. 27.
    B. Drossel et al., in Annual review of nonlinear dynamics and complexity (Wiley, New York, NY, USA, 2008), Vol. 1 Google Scholar
  28. 28.
    D., Cheng, H. Qi, IEEE Trans. Neural. Netw. Learn. Syst. 21, 584 (2010) CrossRefGoogle Scholar
  29. 29.
    E. Bilotta, P. Pantano, S. Vena, Int. J. Bifurc. Chaos 21, 373 (2011) CrossRefGoogle Scholar
  30. 30.
    E. Bilotta, P. Pantano, Int. J. Bifurc. Chaos 21, 1501 (2011) CrossRefGoogle Scholar
  31. 31.
    Q. Wei, C.J. Xie, Y. Liang, Y.J. Niu, D. Lin, AIP Adv. 6, 015013 (2016) ADSCrossRefGoogle Scholar
  32. 32.
    O. Sporns, G. Tononi, R. Kötter, PLoS Comput. Biol. 1, 0245 (2005) CrossRefGoogle Scholar
  33. 33.
    T.E. Behrens, O. Sporns, Curr. Opin. Neurobiol. 22, 144 (2012) CrossRefGoogle Scholar
  34. 34.
    A. Fornito, E.T. Bullmore, Eur. Neuropsychopharmacol. 25, 733 (2015) CrossRefGoogle Scholar
  35. 35.
    M. Rubinov, O. Sporns, Neuroimage 52, 1059 (2009) CrossRefGoogle Scholar
  36. 36.
    M. Gardner et al., Sci. Am. 223, 120 (1970) CrossRefGoogle Scholar
  37. 37.
    E. Bilotta, F. Stranges, P. Pantano, Int. J. Bifurc. Chaos 17, 657 (2007) CrossRefGoogle Scholar
  38. 38.
    E. Bilotta, P. Pantano, A gallery of Chua attractors (World Scientific, Singapore, 2008) Google Scholar
  39. 39.
    E. Tognoli, J.S. Kelso, Neuron 81, 35 (2014) CrossRefGoogle Scholar
  40. 40.
    G. Deco, M.L. Kringelbach, Trends Neurosci. 39, 125 (2016) CrossRefGoogle Scholar
  41. 41.
    C.G. Langton et al., Physica D 42, 12 (1990) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    F. Bertacchini, E. Bilotta, P. Pantano, Comput. Hum. Behav. 77, 382 (2017) CrossRefGoogle Scholar
  43. 43.
    M. Abdechiri, K. Faez, H. Amindavar, E. Bilotta, Nonlinear Dyn. 87, 2597 (2017) CrossRefGoogle Scholar
  44. 44.
    E. Bilotta, P. Pantano, S. Vena, IEEE Trans. Neural. Netw. Learn. Syst. 28, 1228 (2017) CrossRefGoogle Scholar
  45. 45.
    M.C. Lombardo, R. Barresi, E. Bilotta, F. Gargano, P. Pantano, M. Sammartino, J. Math.Biol. 75, 373 (2017) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universita della Calabria, Department of Mechanical EngineeringCosenzaItaly
  2. 2.Universita della Calabria, Department of PhysicsCosenzaItaly
  3. 3.Universita degli Studi di Palermo, Department of MathematicsPalermoItaly
  4. 4.Universita degli Studi di Palermo, Dipartimento dell’Innovazione Industriale e Digitale (DIID)PalermoItaly

Personalised recommendations