Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 865–881 | Cite as

The perception of entropy in rapidly moving sparse dot arrays: a nonlinear dynamic perspective

Nonlinear dynamical model of perception
  • Patrick Celka
  • Trevor Hine
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

In visual fields composed of dots spatially randomly distributed but moving rigidly, the percept of coherent motion is lost once Dmax is exceeded, resulting in an incoherent, random percept. We have investigated this transition both from a psychophysics perspective and in the development of a dynamic model of the visual system based on a spatially coupled array of nonlinear damped mass-springs cells. We present results of experiments using rigidly moving arrays of dots of different levels of sparseness and differing displacement magnitudes. Results show that the perception of randomness can be reliably judged and displays a transition from coherent to non-coherent motion as the motion amplitude is increased. Using standard psychophysical just noticeable difference (JND) judgements, we noted that the threshold JND was a function of displacement magnitude and sparseness and could not be explained by extant spatiotemporal filtering models. Our model qualitatively explains the important features of the data, reproducing the experimental Dmax and entropy perception effects with increased stimuli motion amplitude at different spatial sparseness levels. We have then performed some numerical simulations of the model when the masses in the array are randomly distributed. Results show that sparseness plays different role if close or far from Dmax in terms of motion coherence discrimination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Wurtz, Vision Res. 48, 2070 (2008) CrossRefGoogle Scholar
  2. 2.
    D.M. Snodderly, Vision Res. 118, 31 (2016) CrossRefGoogle Scholar
  3. 3.
    S. Aoki, A. Kawano, M. Terao, I. Murakami, J. Vis. 16, 1 (2016) CrossRefGoogle Scholar
  4. 4.
    I. Murakami, P. Cavanagh, Vision Res. 41, 173 (2001) CrossRefGoogle Scholar
  5. 5.
    I. Murakami, P. Cavanagh, Nature 395, 798 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    L. Glass, Math. Intell. 24, 37 (2002) MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Davidenko, N. Heller, Y. Cheong, J. Smith, J. Vis. 17, 1 (2017) Google Scholar
  8. 8.
    L. Dugué, R. VanRullen, J. Vis. 14, 1 (2014) CrossRefGoogle Scholar
  9. 9.
    K. Nakayama, G.H. Silverman, Vision Res. 28, 747 (1988) CrossRefGoogle Scholar
  10. 10.
    S. Martinez-Conde, S.L. Macknik, D.H. Hubel, Nat. Rev. Neurosci. 5, 229 (2004) CrossRefGoogle Scholar
  11. 11.
    S. Cerutti, V. Bersani, A. Carrara, D. Liberati, J. Biomed. Eng. 9, 3 (1987) CrossRefGoogle Scholar
  12. 12.
    E.P. Simoncelli et al., J. Cogn. Neurosci. 3, 1 (2004) Google Scholar
  13. 13.
    R. Sekuler, S.M. Anstis, O.J. Braddick, T. Brandt, J.A. Movshon, G. Orban, in Visual Perception: The Neurophysiological Foundations (Academic Press, Cambridge, Massachusetts, USA, 1990), pp. 205–230 Google Scholar
  14. 14.
    B. Franceschiello, A. Sarti, G. Citti, J. Math. Imaging Vis. 60, 94 (2018) CrossRefGoogle Scholar
  15. 15.
    P. Martineau, M. Aguilar, L. Glass, Phys. Rev. Lett. 103, 1 (2009) CrossRefGoogle Scholar
  16. 16.
    P. Martineau, J. Comput. Neurosci. 31, 273 (2011) CrossRefGoogle Scholar
  17. 17.
    D. Stephen, J. Dixon, R.W. Isenhower, J. Exp. Psychol. Hum. Percept. Perform. 35, 1811 (2009) CrossRefGoogle Scholar
  18. 18.
    J.J. Johnson IV, A. Tolk, A. Sousa-Poza, Procedia Comput. Sci. 20, 283 (2013) CrossRefGoogle Scholar
  19. 19.
    E.J. Brändas, Quantum Biosys. 6, 160 (2015) Google Scholar
  20. 20.
    R. Jerath, M.W. Crawford, V.A. Barnes, Front. Psychol. 6, 1204 (2015) CrossRefGoogle Scholar
  21. 21.
    R.A. Eagle, J. Opt. Soc. Am. A 13, 408 (1996) ADSCrossRefGoogle Scholar
  22. 22.
    M. Morgan, Nature 355, 344 (1992) ADSCrossRefGoogle Scholar
  23. 23.
    H. Haken, in Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior and Cognition (Springer Science & Business Media, Berlin/Heidelberg, Germany, 2013), Vol. 67 Google Scholar
  24. 24.
    W. Freeman, Neurodynamics: An Exploration in Mesoscopic Brain Dynamics (Springer Science & Business Media, 2012) Google Scholar
  25. 25.
    D.G. Stephen, J.A. Dixon, R.W. Isenhower, J. Exp. Psychol. Hum. Percept. Perform.35, 1811 (2009) CrossRefGoogle Scholar
  26. 26.
    T.N. Cornsweet, Am. J. Psychol. 75, 485 (1962) CrossRefGoogle Scholar
  27. 27.
    M. Morgan, M. Fahle, Proc. R. Soc. Lond. B 248, 189 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    R. Wozniak, Classics in Psychology 1855–1914: Historical Essays (Thoemmes Press, London, United Kingdom, 1999) Google Scholar
  29. 29.
    W.J. Freeman, Mass Action in the Nervous System (Elsevier Science & Technology Books, New York, 1975) Google Scholar
  30. 30.
    W.J. Freeman, How Brains Make Up Their Minds (Columbia University Press, New York, USA, 2000) Google Scholar
  31. 31.
    R. Núñez, W.J. Freeman, The Primacy of Action, Intention and Emotion (Imprint Academic, Thorverten, UK, 1999) Google Scholar
  32. 32.
    K. Pribram, Mind Matter 2, 7 (2004) Google Scholar
  33. 33.
    R. Engbert, R. Kliegl, Psychol. Sci. 15, 431 (2004) CrossRefGoogle Scholar
  34. 34.
    R.A.M. Gregson, n-Dimensional Nonlinear Psychophysics: Theory and Case Studies (Lawrence Erlbaum Associates Inc., Mahwah, USA, 1992) Google Scholar
  35. 35.
    A.J. White, H. Sun, W.H. Swanson, B.B. Lee, Invest. Ophthalmol. Vis. Sci. 43, 3590 (2002) Google Scholar
  36. 36.
    R.A. Gregson, L.A. Britton, Percept. Psychophys. 48, 343 (1990) CrossRefGoogle Scholar
  37. 37.
    C. Baker, J. Boulton, K. Mullen, Vision Res. 38, 291 (1998) CrossRefGoogle Scholar
  38. 38.
    H. Lamba, Physica D 82, 117 (1995) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J.D. Victor, R.M. Shapley, B.W. Knight, Proc. Natl. Acad. Sci. 74, 3068 (1977) ADSCrossRefGoogle Scholar
  40. 40.
    M.H. Hennig, K. Funke, F. Wörgötter, J. Neurosci. 22, 8726 (2002) CrossRefGoogle Scholar
  41. 41.
    Y. Fukushima, K. Hara, M. Kimura, Biol. Cybern. 54, 91 (1986) CrossRefGoogle Scholar
  42. 42.
    B. Lee, A. Elepfandt, V. Virsu, J. Neurophys. 45, 807 (1981) CrossRefGoogle Scholar
  43. 43.
    J.A. Perrone, J. Vis. 5, 3 (2005) CrossRefGoogle Scholar
  44. 44.
    S. Prince, S. Offen, B.G. Cumming, R.A. Eagle, Perception 30, 367 (2001) CrossRefGoogle Scholar
  45. 45.
    C. Baker Jr, A. Baydala, N. Zeitouni, Vision Res. 29, 849 (1989) CrossRefGoogle Scholar
  46. 46.
    J.B. Demb, P. Sterling, M.A. Freed, J. Neurophys. 92, 2510 (2004) CrossRefGoogle Scholar
  47. 47.
    E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, F. Moss, Phys. Rev. Lett. 78, 1186 (1997) ADSCrossRefGoogle Scholar
  48. 48.
    F. Moss, L.M. Ward, W.G. Sannita, Clin. Neurophysiol. 115, 267 (2004) CrossRefGoogle Scholar
  49. 49.
    A. Dunin, T. Hine, P. Celka, Aust. J. Psychol. 58, 73 (2006) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SATHeart SA, Research Unit 13Yverdon-les-BainsSwitzerland
  2. 2.School of Applied Psychology, Griffith UniversityBrisbaneAustralia

Personalised recommendations