Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 907–919 | Cite as

Synchronization in a fractional-order model of pancreatic β-cells

  • E. Zambrano-Serrano
  • J. M. Muñoz-Pacheco
  • L. C. Gómez-Pavón
  • A. Luis-Ramos
  • G. Chen
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

β-cells in the pancreas can be described by a model of coupled biological oscillators with communication links, which can synchronize their electrical activities, giving rise to a square-wave bursting-like insulin release. In fact, β-cells play a vital role in analyzing and characterizing diabetes conditions. This research work studies the synchronization between two fractional-order pancreatic β-cells. Numerically, the fractional-order model of the pancreatic β-cell is analyzed using an algorithm derived from the Grünwald–Letnikov scheme. It is found that, by modifying only the fractional-order while preserving the system parameter values, different types of bursting activities can be observed. Then, synchronization in the coupled fractional-order pancreatic β-cells is studied in detail by considering different patterns of the bursting activities. Simulation results demonstrate that a complete synchronization is effectively attained by choosing a proper value for the control gain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Heydarinejad, H. Delavari, Fractional order back stepping sliding mode control for blood glucose regulation in type I diabetes patients, in Theory and Applications of Non-integer Order Systems, edited by A. Babiarz, A. Czornik, J. Klamka, M. Niezabitowski (Springer, 2017), pp. 187–202 Google Scholar
  2. 2.
    A. Loppini, A. Capolupo, C. Cherubini, A. Gizzi, M. Bertolaso, S. Filippi, G. Vitiello, Phys. Lett. A 378, 3210 (2014) ADSCrossRefGoogle Scholar
  3. 3.
    G. Dupont, M. Falcke, V. Kirk, J. Sneyd, Models of Calcium Signalling (Springer, Switzerland, 2016) Google Scholar
  4. 4.
    G. de Vries, R.M. Miura, SIAM J. Appl. Math. 58, 607 (1998) MathSciNetCrossRefGoogle Scholar
  5. 5.
    P. Meng, Q. Wang, Q. Lu, Cogn. Neurodyn. 7, 197 (2013) CrossRefGoogle Scholar
  6. 6.
    MA. Ravier, P. Gilon, J.C. Henquin, Diabetes 48, 2374 (1999) CrossRefGoogle Scholar
  7. 7.
    D.K Guevara-Flores et al., Dynamical analysis of a beta cell biological system and its hardware realization, in Nonlinear Systems, Design, Applications and Analysis, edited by C. Volos (Nova, 2017), pp. 341–365 Google Scholar
  8. 8.
    D.A. Striegel, M. Hara, V. Periwal, PLoS Comput. Biol. 11, e1004423 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    N. Oliver, P. Georgiou, D. Johnston, C. Toumazou, J. Diabetes Sci. Technol. 3, 1419 (2009) CrossRefGoogle Scholar
  10. 10.
    N. Dahasert, I. Öztürk, R. Kilic, Nonlinear Dyn. 70, 2343 (2012) CrossRefGoogle Scholar
  11. 11.
    S.K. Thottil, R.P. Ignatius, Nonlinear Dyn. 87, 1879 (2017) CrossRefGoogle Scholar
  12. 12.
    D.K. Guevara-Flores, J.M. Munoz-Pacheco, E. Zambrano-Serrano, O. Félix-Beltrán, C.K. Volos, in International Conference on Modern Circuits and Systems Technologies (MOCAST) (2016), p. 1 Google Scholar
  13. 13.
    J. Wang, S. Liu, X. Liu, Chaos Soliton. Fract. 68, 65 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    M-F. Danca, W. Tang, Q. Wang, G. Chen, Eur. Phys. J. B 86, 79 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    D. Ding, X. Qian, W. Hu, N. Wang, D. Liang, Eur. Phys. J. Plus 132, 447 (2017) CrossRefGoogle Scholar
  16. 16.
    S. He, K. Sun, X. Mei, B. Yan, S, Xu, Eur. Phys. J. Plus 132, 36 (2017) CrossRefGoogle Scholar
  17. 17.
    Y. Xu, K. Sun, S. He, L. Zhang, Eur. Phys. J. Plus 131, 186 (2016) CrossRefGoogle Scholar
  18. 18.
    E. Zambrano-Serrano, E. Campos-Canton, J.M. Munoz-Pacheco, Nonlinear Dyn. 83, 1629 (2016) CrossRefGoogle Scholar
  19. 19.
    E. Zambrano-Serrano, J.M. Munoz-Pacheco, E. Campos-Canton, Int. J. Electron. Commun. (AEÜ) 79, 43 (2017) CrossRefGoogle Scholar
  20. 20.
    S. Ghasemi, A. Tabesh, J. Askari-Marnani, IEEE Trans. Energy Convers. 29, 780 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    P. Muthukumar, P. Balasubramaniam, Nonlinear Dyn. 74, 1169 (2013) CrossRefGoogle Scholar
  22. 22.
    V-T. Pham, A. Ouannas, C. Volos, T. Kapitaniak, Int. J. Electron. Commun. (AEÜ) 86, 69 (2018) CrossRefGoogle Scholar
  23. 23.
    V.-T, Pham, S. T. Kingni, C. Volos, S. Jafari, T. Kapitaniak, Int. J. Electron. Commun. (AEÜ) 78, 220 (2017) CrossRefGoogle Scholar
  24. 24.
    A. Ouannas, X. Wang, V.-T. Pham, G. Grassi, T. Ziar, Adv. Differ. Equ. 35, 1 (2018) Google Scholar
  25. 25.
    X. Wang, A. Ouannas, V.-T. Pham, H. R. Abdolmohammadi, Adv. Differ. Equ. 20, 1 (2018) Google Scholar
  26. 26.
    D.V. Hoang, S.T. Kingni, V.-T. Pham, Math. Probl. Eng. 3927184, 1 (2017) CrossRefGoogle Scholar
  27. 27.
    W-C. Chen, Chaos Soliton. Fract. 36, 1305 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    A. Razminia, D. Baleanu, J. Comput. Nonlinear Dyn. 8, 031012 (2013) CrossRefGoogle Scholar
  29. 29.
    I.S Jesus, J.A. Tenreiro-Machado, J. Boaventure-Cunha, J. Vib. Control 14, 1389 (2008) CrossRefGoogle Scholar
  30. 30.
    E. Ahmed, HA. El-Saka, Nonlinear Biomed. Phys. 4, 1 (2010) CrossRefGoogle Scholar
  31. 31.
    B. Bodo, A. Mvogo, S. Morfu, Chaos Soliton. Fract. 102, 426 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    C. Ionescu, A. Lopes, D. Copota, J.A.T. Machado, J.H.T. Bates, Commun. Nonlinear Sci. Numer. Simul. 51, 141 (2017) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    A. Mvogo, G.H. Ben-Bolie, T.C. Kofane, Commun. Nonlinear Sci. Numer. Simul. 48, 258 (2017) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    WW. Teka, RK. Upadhyay, A. Mondal, Commun. Nonlinear. Sci. Numer. Simulat. 56, 161 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    S. Sarwar, M. A. Zahid, S. Iqbal, Int. J. Biomath. 9, 1650081 (2016) MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. AboBakr, L.A. Said, A.H. Madian, A.S. Elwakil, A.G. Radwan, Int. J. Electron. Commun. 80, 1 (2017) CrossRefGoogle Scholar
  37. 37.
    L. Pecoras, T. Carroll, Phys. Rev. Lett. 64, 821 (1990) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    X. Yang, H. Liu, S. Li, Adv. Differ. Equ. 2017, 344 (2017) CrossRefGoogle Scholar
  39. 39.
    P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Int. J. Dyn. Control 5, 115 (2017) MathSciNetCrossRefGoogle Scholar
  40. 40.
    S. Acharyya, R.E. Amritkar, Eur. Phys. J. Special Topics 222, 939 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    S. Bhalekar, Eur. Phys. J. Special Topics 223, 1495 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017) CrossRefGoogle Scholar
  43. 43.
    R. Kengne, R. Tchitnga, A. Mezatio, A. Fomethe, G. Litak, Eur. Phys. J. B 90, 88 (2017) ADSCrossRefGoogle Scholar
  44. 44.
    S. Vaidyanathan, Eur. Phys. J. Special Topics 223, 1519 (2014) ADSCrossRefGoogle Scholar
  45. 45.
    M. Hara, J.L. Fowler, G.I. Bell, L.H. Philipson, Diabetes Metab. 42, 157 (2016) CrossRefGoogle Scholar
  46. 46.
    C.P. Li, Z.G. Zhao, Eur. Phys. J. Special Topics 193, 5 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    C. Li, W. Deng, App. Math. Comput. 187, 777 (2007) CrossRefGoogle Scholar
  48. 48.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, CA, 1999) Google Scholar
  49. 49.
    I. Petras, Fractional-Order Nonlinear Systems (Springer, Berlin, 2011) Google Scholar
  50. 50.
    J. Rinzel, Y.S. Lee, J. Math. Biol. 25, 653 (1987) MathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Pernarowski, SIAM J. Appl. Math. 54, 814 (1994) MathSciNetCrossRefGoogle Scholar
  52. 52.
    M. Pernarowski, SIAM J. Appl. Math. 58, 1667 (1998) MathSciNetCrossRefGoogle Scholar
  53. 53.
    H. Li, X. Liao, M. Luo, Nonlinear Dyn. 68, 137 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electronics Sciences, Autonomous University of PueblaPueblaMexico
  2. 2.Department of Electronic EngineeringCity University of Hong KongHong KongP.R. China

Personalised recommendations