Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 707–718 | Cite as

Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision

  • Hadi Jahanshahi
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

In this paper, a robust adaptive controller subject to decoupled sliding mode controller as a supervisory controller has been implemented on the HIV infection dynamic model. A five-state dynamic model of HIV is utilized which the measurement of the CD4+T cells and the viral load counts are necessary to estimate all its parameters. Decoupled sliding mode control is a variable structure controller having significant and appropriate features, such as best tracking and regulation performance and robustness and elevate the performance of the controller. Generally, due to the importance of applied treatment strategy to mitigate viral escape, sliding mode control is utilized in accordance with PI control to deliver necessary control inputs. To achieve the least possible chattering, effectual methods such as the transfer function is used. To update the gains of PI control, an adaptation law is then employed. The results demonstrate the suitable performance of the controller via providing proper tracking performance, and also, elimination of the chattering problem and decrease the time of treatment. The number of infected CD4+ T-cells and the number of free virus particles can be controlled in less than five days. The proposed controller is capable of controlling the dynamic behavior of the virus concentration for different patients with the same control scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Quax, D.A.M.C. van de Vijver, D. Frentz, P.M.A. Sloot, Eur. Phys. J. Special Topics 222, 1347 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    H. Chang, A. Astolfi, IEEE Control Syst. 28, 28 (2008) Google Scholar
  3. 3.
    D.A.M.C. van de Vijver, M.C.F. Prosperi, J.J. Ramasco, Eur. Phys. J. Special Topics 222, 1403 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    P.K. Roy, Mathematical models for therapeutic approaches to control HIV disease transmission (Springer, Singapore, 2015) Google Scholar
  5. 5.
    M. Joly, J.M. Pinto, AIChE J. 52, 856 (2006) CrossRefGoogle Scholar
  6. 6.
    K.O. Okosun, M.A. Khan, E. Bonyah, S.T. Ogunlade, Eur. Phys. J. Plus. 132, 363 (2017) CrossRefGoogle Scholar
  7. 7.
    S.M.K. Heris, H. Khaloozadeh, IEEE Trans. Biomed. Eng. 58, 1678 (2011) CrossRefGoogle Scholar
  8. 8.
    M.E. Brandt, G. Chen, IEEE Trans. Biomed. Eng. 48, 754 (2001) CrossRefGoogle Scholar
  9. 9.
    S.S. Ge, Z. Tian, T.H. Lee, IEEE Trans. Biomed. Eng. 52, 353 (2005) CrossRefGoogle Scholar
  10. 10.
    Y. Liu, Feedback linearization and optimal design for the control of an HIV pathogenesis model, in Control and Decision Conference (CCDC), 2015 27th Chinese (IEEE, 2015), pp. 1482–1486 Google Scholar
  11. 11.
    F.L. Biafore, C.E. D’Attellis, Exact Linearisation and Control of a HIV-1 Predator-Prey Model, in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference (IEEE, 2006), pp. 2367–2370 Google Scholar
  12. 12.
    H. Chang, A. Astolfi, IEEE Trans. Autom. Sci. Eng. 6, 248 (2009) CrossRefGoogle Scholar
  13. 13.
    B.M. Adams, H.T. Banks, M. Davidian, H.-D. Kwon, H.T. Tran, S.N. Wynne, E.S. Rosenberg, J. Comput. Appl. Math. 184, 10 (2005) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Shim, S.-J. Han, C.C. Chung, S.W. Nam, J.H. Seo, Int. J. Control Autom. Syst. 1, 282 (2003) Google Scholar
  15. 15.
    G. Pannocchia, M. Laurino, A. Landi, IEEE Trans. Biomed. Eng. 57, 1040 (2010) CrossRefGoogle Scholar
  16. 16.
    M.R. Zarrabi, M.H. Farahi, S. Effati, A.J. Koshkouei, Adv. Model. Optim. 14 (2012) Google Scholar
  17. 17.
    N.H. Jo, Y. Roh, Biomed. Signal Process. Control. 18, 245 (2015) CrossRefGoogle Scholar
  18. 18.
    J.M. Lemos, M.S. Barão, Arch. Control Sci. 22, 273 (2012) MathSciNetCrossRefGoogle Scholar
  19. 19.
    W. Assawinchaichote, Biomed. Mater. Eng. 26, S1945 (2015) Google Scholar
  20. 20.
    A. Kosari, H. Jahanshahi, A. Razavi, J. Aerosp. Eng. 30, 4017011 (2017) CrossRefGoogle Scholar
  21. 21.
    A.I. Dounis, P. Kofinas, C. Alafodimos, D. Tseles, Renew. Energy. 60, 202 (2013) CrossRefGoogle Scholar
  22. 22.
    M.A. Khanesar, O. Kaynak, S. Yin, H. Gao, IEEE Trans. Fuzzy Syst. 23, 205 (2015) CrossRefGoogle Scholar
  23. 23.
    A. Saghafinia, H.W. Ping, M.N. Uddin, K.S. Gaeid, IEEE Trans. Ind. Appl. 51, 692 (2015) CrossRefGoogle Scholar
  24. 24.
    W.M. Bessa, A.S. De Paula, M.A. Savi, Eur. Phys. J. Special Topics 222, 1541 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    W.-S. Yu, C.-C. Weng, Fuzzy Sets Syst. 248, 1 (2014) CrossRefGoogle Scholar
  26. 26.
    B. Niu, J. Zhu, Y. Su, H. Li, L. Li, Nonlinear Dyn. 73, 1803 (2013) CrossRefGoogle Scholar
  27. 27.
    Y. Li, Q. Xu, IEEE Trans. Control Syst. Technol. 18, 798 (2010) CrossRefGoogle Scholar
  28. 28.
    J.Y. Peng, X.B. Chen, IEEE/ASME Trans. Mechatronics. 19, 88 (2014) CrossRefGoogle Scholar
  29. 29.
    D. Wodarz, M.A. Nowak, Proc. Natl. Acad. Sci. 96, 14464 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    D. Wodarz, M.A. Nowak, BioEssays. 24, 1178 (2002) CrossRefGoogle Scholar
  31. 31.
    J.H. Ko, W.H. Kim, C.C. Chung, IEEE Trans. Biomed. Eng. 53, 380 (2006) CrossRefGoogle Scholar
  32. 32.
    L.-C. Hung, H.-Y. Chung, Int. J. Approx. Reason. 46, 74 (2007) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of New Sciences and Technologies, University of TehranTehranIran

Personalised recommendations