Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 851–863 | Cite as

The collective dynamics of NF − κB in cellular ensembles

Cluster synchrony, splay states, and chimeras
  • Raviteja Donepudi
  • Ram Ramaswamy
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

The transcription factor NF − κB is a crucial component in inflammatory signalling. Its dynamics is known to be oscillatory and has been extensively studied. Using a recently developed model of NF − κB regulation, we examine the collective dynamics of a network of NF − κB oscillators that are coupled exogenously by a common drive (in this case a periodically varying cytokine signal corresponding to the TNF molecule concentration). There is multistability owing to the overlapping of Arnol’d tongues in each of the oscillators, and thus the collective dynamics exhibit a variety of complex dynamical states. We also study the case of a globally (mean field) coupled network and observe that the ensemble can display global synchronisation, cluster synchronisation and splay states. In addition, there can be dynamical chimeras, namely coexisting synchronised and desynchronized clusters. The basins of attraction of these different collective states are studied and the parametric dependence in the basin uncertainty is examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Gray, P. König, A.K. Engel, W. Singer, Nature 338, 334 (1989) ADSCrossRefGoogle Scholar
  2. 2.
    A. Hastings, T. Powell, Ecology 72, 896 (1991) CrossRefGoogle Scholar
  3. 3.
    R. Lev Bar-Or, R. Maya, L.A. Segel, U. Alon, A.J. Levine, M. Oren, Proc. Natl. Acad. Sci. 97, 11250 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    L. Stone, D. He, J. Theor. Biol. 248, 382 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    F. Jülicher, J. Prost, Phys. Rev. Lett. 78, 4510 (1997) ADSCrossRefGoogle Scholar
  6. 6.
    A. Hoffmann, A. Levchenko, M.L. Scott, Science 298, 1241 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    A.T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001) Google Scholar
  8. 8.
    J.C. Dunlap, Cell 96, 271 (1999) CrossRefGoogle Scholar
  9. 9.
    A. Nandi, C. Vaz, A. Bhattacharya, R. Ramaswamy, BMC Syst. Biol. 3, 1 (2009) CrossRefGoogle Scholar
  10. 10.
    M.S. Hayden, S. Ghosh, Genes Dev. 26, 203 (2012) CrossRefGoogle Scholar
  11. 11.
    Q. Zhang, M.J. Lenardo, D. Baltimore, Cell 168, 37 (2017) CrossRefGoogle Scholar
  12. 12.
    A.A. Beg, D. Baltimore, Science 274, 782 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    L.A.J. O’Neill, C. Kaltschmidt, Trends Neurosci. 20, 252 (1997) CrossRefGoogle Scholar
  14. 14.
    P.A. Baeuerle, T. Henkel, Annu. Rev. Immunol. 12, 141 (1994) CrossRefGoogle Scholar
  15. 15.
    T. Lawrence, Cold Spring Harb. Perspect. Biol. 1, 1 (2009) CrossRefGoogle Scholar
  16. 16.
    U. Feudel, Int. J. Bifur. Chaos 18, 1607 (2008) CrossRefGoogle Scholar
  17. 17.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    S.R. Ujjwal, N. Punetha, R. Ramaswamy, M. Agrawal, A. Prasad, Chaos 26, 063111 (2016) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S.R. Ujjwal, N. Punetha, A. Prasad, R. Ramaswamy, Phys. Rev. E 95, 032203 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    T. Wontchui, J.Y. Effa, H.P.E Fouda, S.R. Ujjwal, R. Ramaswamy, Phys. Rev. E 96, 062203 (2017) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003) Google Scholar
  22. 22.
    S.H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Perseus books, New York, 1994) Google Scholar
  23. 23.
    L.M. Pecora, F. Sorrentino, A.M. Hagerstrom, T.E. Murphy, R. Roy, Nat. Commun. 5, 4079 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    S. Krishna, M.H. Jensen, K. Sneppen, Proc. Natl. Acad. Sci. 103, 10840 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    M.H. Jensen, S. Krishna, FEBS Lett. 586, 1664 (2012) CrossRefGoogle Scholar
  26. 26.
    M.L. Heltberg, S. Krishna, M.H. Jensen, J. Stat. Phys. 167, 792 (2017) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Olmos, J. Lladó, Mediators Inflammation 2014, 861231 (2014) CrossRefGoogle Scholar
  28. 28.
    W.-M Chu, Cancer Lett. 328, 222 (2012) CrossRefGoogle Scholar
  29. 29.
    S.I. Grivennikov, A.V. Tumanov, D.J. Liepinsh, A.A. Kruglov, B.I. Marakusha, A.N. Shakhov, T. Murakami, L.N. Drutskaya, I. Förster, B.E. Clausen, L. Tessarollo, B. Ryffel, D.V. Kuprash, S.A. Nedospasov, Immunity 22, 93 (2005) Google Scholar
  30. 30.
    E.E Varfolomeev, A. Ashkenazi, Cell 116, 491 (2004) CrossRefGoogle Scholar
  31. 31.
    M. Karin, Oncogene 18, 686 (1999) CrossRefGoogle Scholar
  32. 32.
    M. Hinz, C. Scheidereit, EMBO Rep. 15, 46 (2014) CrossRefGoogle Scholar
  33. 33.
    B. Mengel, A. Hunziker, L. Pedersen, A. Trusina, M.H. Jensen, S. Krishna, Curr. Opin. Genet. Dev. 20, 656 (2010) CrossRefGoogle Scholar
  34. 34.
    M.H. Jensen, L.P. Kadanoff, S. Krishna, J. Stat. Phys. 167, 792 (2017) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M.L. Heltberg, R.A. Kellogg, S. Krishna, S. Tay, M.H. Jensen, Cell Syst. 3, 532 (2016) CrossRefGoogle Scholar
  36. 36.
    R.A. Kellogg, S. Tay, Cell 160, 381 (2015) CrossRefGoogle Scholar
  37. 37.
    H.E. Nusse, J.A. Yorke, Science 271, 1376 (1996) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    J.C. Alexander, J.A. Yorke, Z You, I. Kan, Int. J. Bifur. Chaos Appl. Sci. Eng. 02, 795 (1992) CrossRefGoogle Scholar
  39. 39.
    J. Huisman, F.J. Weissing, Am. Nat. 157, 488 (2001) CrossRefGoogle Scholar
  40. 40.
    A. Daza, A. Wagemakers, B. Georgeot, D. Guery-Odelin, M.A.F. Sanjuan, Sci. Rep. 6, 31416 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    P. Ashwin, O. Burylko, Chaos 25, 013106 (2015) ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    T.Y. Tsai, Y.S. Choi, W. Ma, J.R. Pomerening, C. Tang, J.E. Ferrell Jr., Science 321, 126 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    S. Zambrano, I. DeToma, A. Piffer, M.E. Bianchi, A. Agresti, eLife 5, e09100 (2016) CrossRefGoogle Scholar
  44. 44.
    D. Angeli, J.E. Ferrell Jr., E.D. Sontag, Proc. Natl. Acad. Sci. USA 101, 1822 (2004) ADSCrossRefGoogle Scholar
  45. 45.
    E. Ullner, A. Zaikin, E.I. Volkov, J. Garcia-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    R. Li, B. Bowerman, Cold Spring Harb. Perspect. Biol. 2, a003475 (2010) CrossRefGoogle Scholar
  47. 47.
    M.M. Markiewski, J.D. Lambris, Am. J. Path. 171, 715 (2007) CrossRefGoogle Scholar
  48. 48.
    S. Halstenberg, A. Panitch, S. Rizzi, H. Hall, J.A. Hubbell, Biomacromolecules 3, 710 (2002) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations