Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 697–705 | Cite as

Does the onset of epileptic seizure start from a bifurcation point?

  • Fahimeh Nazarimehr
  • Seyed Mohammad Reza Hashemi Golpayegani
  • Boshra Hatef
Regular Article
  • 21 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

Detection of epileptic seizures is a major challenge of these days. There are lots of papers which pay their attention to this subject. Recently, some dynamical disease with attacks such as epilepsy are considered as a system in which critical slowing down can be seen before their attacks (seizure). Although there are not many researches on the prediction of seizures using this phenomenon. Recently [P. Milanowski, P. Suffczynski, Int. J. Neural Syst. 26, 1650053 (2016)] have investigated the application of critical slowing down indicators and surprisingly they found that only in 8% of nearby 300 epileptic patients have the evidence of critical slowing down before seizures. The main goal of this paper is finding the answer of the important question “can we trust that epileptic seizures are bifurcations in the neural system”. In order to find the answer, different studies on the prediction of seizure are investigated and we prove that features which are used in those papers are critical slowing down indicators although they are not aware of it. So we present some reasons for the occurrence of critical slowing down before the seizure. We hope that this study will be a motivation of future studies on the application of critical slowing down indicators for predicting epileptic seizures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Milanowski, P. Suffczynski, Int. J. Neural Syst. 26, 1650053 (2016) CrossRefGoogle Scholar
  2. 2.
    P.A. Rutecki, J. Clin. Neurophysiol.: Off. Publ. Am. Electroencephalogr. Soc. 9, 195 (1992) CrossRefGoogle Scholar
  3. 3.
    E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Sci. Rep. 6, 30914 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    J. Wu, Y. Xu, J. Ma, PLoS One 12, e0174330 (2017) CrossRefGoogle Scholar
  5. 5.
    M. Gosak, R. Markovié, J. Dolenšek et al., Phys. Life Rev. 24, 118 (2018) ADSCrossRefGoogle Scholar
  6. 6.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017) CrossRefGoogle Scholar
  7. 7.
    Q. Wang, H. Zhang, M. Perc, G. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 3979 (2012) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Xu, Y. Jia, J. Ma, T. Hayat, A. Alsaedi, Sci. Rep. 8, 1349 (2018) ADSCrossRefGoogle Scholar
  9. 9.
    X. Li, S.Song, J. Wu, Sci. China Inf. Sci. 61, 012203 (2018) CrossRefGoogle Scholar
  10. 10.
    Q. Wang, M. Perc, Z. Duan, G. Chen, Phys. Lett. A 372, 5681 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    W. Zou, D. Senthilkumar, R. Nagao et al., Nat. Commun. 6, 7709 (2015) CrossRefGoogle Scholar
  12. 12.
    J. Ma, F. Wu, C. Wang, Int. J. Modern Phys. B 31, 1650251 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Appl. Math. Comput. 307, 321 (2017) MathSciNetGoogle Scholar
  14. 14.
    X. Li, X. Fu, Commun. Nonlinear Sci. Numer. Simul. 16, 885 (2011) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    S.L. Moshé, E. Perucca, P. Ryvlin, T. Tomson, Lancet 385, 884 (2015) CrossRefGoogle Scholar
  16. 16.
    R.S. Fisher, W.V.E. Boas, W. Blume et al., Epilepsia 46, 470 (2005) CrossRefGoogle Scholar
  17. 17.
    S.-H. Kim, C. Faloutsos, H.-J. Yang, Comput. Math. Methods Med. 2013, 12 (2013) Google Scholar
  18. 18.
    S. Sunderam, I. Osorio, M.G. Frei, J.F. Watkins, J. Clin. Neurophys. 18, 275 (2001) CrossRefGoogle Scholar
  19. 19.
    M. Perc, M. Rupnik, M. Gosak, M. Marhl, Chaos: Interdiscip. J. Nonlinear Sci. 19, 037113 (2009) CrossRefGoogle Scholar
  20. 20.
    H.S. Haghighi, A. Markazi, Sci. Rep. 7, 13615 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    P.E. McSharry, L.A. Smith, L. Tarassenko, Nat. Med. 9, 241 (2003) CrossRefGoogle Scholar
  22. 22.
    S. Panahi, Z. Aram, S. Jafari, J. Ma, J. Sprott, Chaos Soliton. Fract. 105, 150 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    A. Koseska, J. Kurths, Chaos: An Interdiscip. J. Nonlinear Sci. 20, 045111 (2010) CrossRefGoogle Scholar
  24. 24.
    M. El Naschie, T. Kapitaniak, Phys. Lett. A 147, 275 (1990) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Molaie, R. Falahian, S. Gharibzadeh, S. Jafari, J.C. Sprott, Front. Comput. Neurosci. 8, 40 (2014) CrossRefGoogle Scholar
  26. 26.
    R. Falahian, M.M. Dastjerdi, M. Molaie, S. Jafari, S. Gharibzadeh, Nonlinear Dyn. 81, 1951 (2015) CrossRefGoogle Scholar
  27. 27.
    Z. Aram, S. Jafari, J. Ma, J.C. Sprott, S. Zendehrouh, V.-T. Pham, Commun. Nonlinear Sci. Numer. Simul. 44, 449 (2017) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    G. Baghdadi, S. Jafari, J. Sprott, F. Towhidkhah, M.H. Golpayegani, Commun. Nonlinear Sci. Numer. Simul. 20, 174 (2015) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    F. Hadaeghi, M.R. Hashemi Golpayegani, S. Jafari, G. Murray, Aust. N. Z. J. Psychiatry 50, 783 (2016) CrossRefGoogle Scholar
  30. 30.
    A. Petrosian, D. Prokhorov, R. Homan, R. Dasheiff, D. Wunsch, Neurocomputing 30, 201 (2000) CrossRefGoogle Scholar
  31. 31.
    H. Adeli, S. Ghosh-Dastidar, N. Dadmehr, IEEE Trans. Biomed. Eng. 54, 205 (2007) Google Scholar
  32. 32.
    W.J. Freeman, IEEE Trans. Circuits Syst. 35, 781 (1988) Google Scholar
  33. 33.
    D.R. Freestone, P.J. Karoly, M.J. Cook, Curr. Opin. Biotechnol. 30, 167 (2017) Google Scholar
  34. 34.
    M. Scheffer, J. Bascompte, W.A. Brock et al., Nature 461, 53 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    T.M. Lenton, H. Held, E. Kriegler et al., Proc. Natl. Acad. Sci. 105, 1786 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker, Nature 413, 591 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    M.G.O. Rikkert, V. Dakos, T.G. Buchman et al., Crit. Care Med. 44, 601 (2016) CrossRefGoogle Scholar
  38. 38.
    C. Trefois, P.M. Antony, J. Goncalves, A. Skupin, R. Balling, Curr. Opin. Biotechnol. 34, 48 (2015) CrossRefGoogle Scholar
  39. 39.
    M.A. Kramer, W. Truccolo, U.T. Eden et al., Proc. Natl. Acad. Sci. 109, 21116 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    A. Bayani, F. Hadaeghi, S. Jafari, G. Murray, Chronobiol. Int. 34, 235 (2017) CrossRefGoogle Scholar
  41. 41.
    C. Meisel, C. Kuehn, PLoS One 7, e30371 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    P. Rajna, B. Clemens, E. Csibri et al., Seizure 6, 361 (1997) CrossRefGoogle Scholar
  43. 43.
    V. Dakos, S.M. Glaser, C.-h. Hsieh, G. Sugihara, J. R. Soc. Interface 14, 20160845 (2017) CrossRefGoogle Scholar
  44. 44.
    H. Khamis, A. Mohamed, S. Simpson, Clin. Neurophysiol. 120, 1479 (2009) CrossRefGoogle Scholar
  45. 45.
    Z. Rogowski, I. Gath, E. Bental, Biol Cybern. 42, 9 (1981) CrossRefGoogle Scholar
  46. 46.
    Y. Salant, I. Gath, O. Henriksen, Med. Biol. Eng. Comput. 36, 549 (1998) CrossRefGoogle Scholar
  47. 47.
    J. Moody, L. Wu, Improved estimates for the rescaled range and Hurst exponents, in Neural Networks in Financial Engineering: Proceedings of the Third International Conference on Neural Networks in the Capital Markets London, England 11–13 October 95, edited by A.-P.N. Refenes, Y. Abu-Mostafa, J. Moody, A. Weigend (World Scientific, London, 1996), pp. 537–553 Google Scholar
  48. 48.
    H. Namazi, V.V. Kulish, J. Hussaini, J. Hussaini, A. Delaviz, F. Delaviz et al., Oncotarget 7, 342 (2016) Google Scholar
  49. 49.
    T. Kleinen, H. Held, G. Petschel-Held, Ocean Dyn. 53, 53 (2003) ADSCrossRefGoogle Scholar
  50. 50.
    V. Dakos, S.R. Carpenter, W.A. Brock et al., PLoS One 7, e41010 (2012) ADSCrossRefGoogle Scholar
  51. 51.
    Y. Park, L. Luo, K.K. Parhi, T. Netoff, Epilepsia 52, 1761 (2011) CrossRefGoogle Scholar
  52. 52.
    G. Ouyang, X. Li, Y. Li, X. Guan, Comput. Biol. Med. 37, 430 2007 CrossRefGoogle Scholar
  53. 53.
    S. Gigola, F. Ortiz, C. D’attellis, W. Silva, S. Kochen, J. Neurosci. Methods 138, 107 (2004) Google Scholar
  54. 54.
    H. Niknazar, A.M. Nasrabadi, Int. J. Bifurc. Chaos 26, 1650186 (2016) CrossRefGoogle Scholar
  55. 55.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons Inc. Hoboken, New Jersey, 2012) Google Scholar
  56. 56.
    C.E. Shannon, W. Weaver, M.D. Comput.: Comput. Med. Pract. 14, 306 (1997) Google Scholar
  57. 57.
    H. Moser, B. Weber, H. Wieser, P. Meier, Physica D 130, 291 (1999) ADSCrossRefGoogle Scholar
  58. 58.
    S.M. Pincus, Proc. Natl. Acad. Sci. 88, 2297 (1991) ADSCrossRefGoogle Scholar
  59. 59.
    Z. Zhang, Z. Chen, Y. Zhou, S. Du, Y. Zhang, T. Mei et al., Clin. Neurophysiol. 125, 1959 (2014) CrossRefGoogle Scholar
  60. 60.
    C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 74102 (2002) ADSCrossRefGoogle Scholar
  61. 61.
    Q. Wei, Q. Liu, S.-Z. Fan et al., Entropy 15, 3458 (2013) ADSCrossRefGoogle Scholar
  62. 62.
    M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14, 1553 (2012) ADSCrossRefGoogle Scholar
  63. 63.
    X. Li, G. Ouyang, D.A. Richards, Epilepsy Res. 77, 70 (2007) CrossRefGoogle Scholar
  64. 64.
    J. Li, J. Yan, X. Liu, G. Ouyang, Entropy 16, 3049 (2014) ADSCrossRefGoogle Scholar
  65. 65.
    R.C. Hilborn, Chaos and Nonlinear Dynamics: An Introduction For Scientists and Engineers (Oxford University Press on Demand, Inc., New York, 2000) Google Scholar
  66. 66.
    F. Nazarimehr, S. Jafari, S.M.R.H. Golpayegani, J. Sprott, Nonlinear Dyn. 88, 1493 (2017) CrossRefGoogle Scholar
  67. 67.
    M. Marhl, M. Perc, Chaos Solitons Fractals 28, 822 (2006) ADSMathSciNetCrossRefGoogle Scholar
  68. 68.
    B. Świderski, S. Osowski, A. Cichocki, A. Rysz, Epileptic seizure prediction using Lyapunov exponents and support vector machine, in International Conference on Adaptive and Natural Computing Algorithms (2007), pp. 373–381 Google Scholar
  69. 69.
    B. Swiderski, S. Osowski, A. Rysz, Lyapunov exponent of EEG signal for epileptic seizure characterization, in Circuit Theory and Design, 2005. Proceedings of the 2005 European Conference on, 2005, Vol. 2, pp. II/153–II/156 Google Scholar
  70. 70.
    P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    D.E. Lerner, Physica D 97, 563 (1996) ADSCrossRefGoogle Scholar
  72. 72.
    A.F. Rabbi, A. Aarabi, R. Fazel-Rezai, Fuzzy rule-based seizure prediction based on correlation dimension changes in intracranial EEG, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (2010), pp. 3301–3304 Google Scholar
  73. 73.
    X. Li, G. Ouyang, Nonlinear Anal. Theory Methods Appl. 64, 1666 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fahimeh Nazarimehr
    • 1
  • Seyed Mohammad Reza Hashemi Golpayegani
    • 1
  • Boshra Hatef
    • 2
  1. 1.Biomedical Engineering Department, Amirkabir University of TechnologyTehranIran
  2. 2.Neuroscience Research Center, Baqiyatallah University of Medical SciencesTehranIran

Personalised recommendations