Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 757–766 | Cite as

Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh–Nagumo neuron

  • Yuangen Yao
  • Jun Ma
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

Based on the FitzHugh–Nagumo (FHN) neuron model, the effects of autapse with constant or time-periodic coupling intensity on signal transmission are investigated by calculating the Fourier coefficient Q for quantitatively characterizing the efficiency of the signal transmission. In the case of constant autaptic coupling intensity, the dependencies of Fourier coefficient Q on autaptic coupling intensity σ present bell-shaped curves and when the autaptic time delay τ is approximately multiple of the period of the sub-threshold external periodic signal, the maximums of Fourier coefficient Q are obtained at moderate autaptic coupling intensities τ. Moreover, with the increase of autaptic coupling intensity τ, autaptic time delay-induced peaks become more abruptly and narrow but the height of peaks increases.This suggests that autapse may play active roles to effectively improve the efficiency and time precision of signal transmission. In the case of autapse with time-periodic coupling intensity, when autaptic coupling intensity oscillates with appropriate speed (neither too fast nor slowly), autapse cannot significantly improve the efficiency of signal transmission, but can significantly broaden the valid ranges of parameters, implying that the plasticity of autapse may improve the adaptive capacity of neurons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yilmaz et al., Physica A 392, 5735 (2013) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Caporale, Y. Dan, Annu. Rev. Neurosci. 31, 25 (2008) CrossRefGoogle Scholar
  3. 3.
    H. Markram et al., Science 275, 213 (1997) CrossRefGoogle Scholar
  4. 4.
    L. Wang, Y. Gong, X. Lin, Chaos Solitons Fractals 45, 131 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    X. Lin, Y. Gong, L. Wang, Chaos 21, 309 (2011) CrossRefGoogle Scholar
  6. 6.
    A. Bî rzu, K. Krischer, Chaos 20, 043114 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    E. Yilmaz, V. Baysal, M. Ozer, Phys. Rev. A 379, 1594 (2015) Google Scholar
  8. 8.
    B. Xu et al., Eur. Phys. J. B 85, 299 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    J. Shi, M. Luo, C. Huang, Cogn. Neurodyn. 11, 383 (2017) CrossRefGoogle Scholar
  10. 10.
    B. Xu et al., Nonlinear Dyn. 72, 79 (2013) CrossRefGoogle Scholar
  11. 11.
    d.L.H. Van, E.M. Glaser, Brain Res. 48, 355 (1972) CrossRefGoogle Scholar
  12. 12.
    E. Yilmaz et al., Sci. Rep. 6, 30914 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    A.B. Karabelasa, D.P. Purruraa, Brain Res. 200, 467 (1980) CrossRefGoogle Scholar
  14. 14.
    G. Tamás, E.H. Buhl, P. Somogyi, J. Neurosci. 17, 6352 (1997) CrossRefGoogle Scholar
  15. 15.
    J. Lü bke et al., J. Neuros. 16, 3209 (1996) CrossRefGoogle Scholar
  16. 16.
    Y. Li et al., Phys. Rev. E 82, 061907 (2010) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.L. Guo et al., Complexity 2017, 4631602 (2017) Google Scholar
  18. 18.
    Y. Xu et al., Sci. Rep. 7, 43452 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yao et al., Physica A 492, 1247 (2018) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Ma etal., Neurocomputing 167, 378 (2015) CrossRefGoogle Scholar
  21. 21.
    H.T. Wang et al., Commun. Nonlinear. Sci. Numer. Simul. 19, 3242 (2014) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Wang et al., Complexity 2017, 5436737 (2017) Google Scholar
  23. 23.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017) CrossRefGoogle Scholar
  24. 24.
    E. Yilmaz, M. Ozer, Physica A 421, 455 (2015) CrossRefGoogle Scholar
  25. 25.
    L.J. Yang et al., Phys. Rev. E 86, 016209 (2012) ADSCrossRefGoogle Scholar
  26. 26.
    C. Yao, M. Zhan, Phys. Rev. E 81, 061129 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Yao, J. Ma, Cogn. Neurodyn. 12, 343 (2018) CrossRefGoogle Scholar
  28. 28.
    Y. Yao, M. Yi, D. Hou, Int. J. Mod. Phys. B 31, 1750204 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Yao et al., Complexity 2018, 5632650 (2018) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, College of ScienceHuazhong Agricultural UniversityWuhanP.R. China
  2. 2.Department of PhysicsLanzhou University of TechnologyLanzhouP.R. China

Personalised recommendations