Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 821–835 | Cite as

Spatial patterns in a network composed of neurons with different excitabilities induced by autapse

  • Yuye Li
  • Bing Jia
  • Xiaoli Zhang
  • Yongxia Yang
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

It has been identified that autapse can modulate dynamics of single neurons and spatial patterns of neuronal networks. In the present paper, based on the results that autapse can induce type II excitability changed to type I excitability, spatial pattern transitions are simulated in a two-dimensional neuronal network composed of excitatory coupled neurons with autapse which can induce excitability transition. Different spatial patterns including random-like pattern, irregular wave, regular wave, and nearly synchronous behavior are simulated with increasing the percentage (σ) of neurons with type I excitability. When noise is introduced, spiral waves are induced. By calculating signal-to-noise ratio from the spatial structure function and the mean firing probability of neurons, regular waves and spiral waves exhibit optimal spatial correlation, implying the occurrence of spatial coherence resonance phenomenon. The changes of mean firing probability of neurons show that different firing frequency between type I excitability and type II excitability may be an important factor to modulate the spatial patterns. The results are helpful to understand the spatial patterns including spiral waves observed in the biological experiment on the rat cortex perfused with drugs which can induce single neurons changed from type II excitability to type I excitability and block the inhibitory couplings between neurons. The excitability transition, absence of inhibitory coupling, noise as well as the autapse are important factors to modulate the spatial patterns including spiral waves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Uhlhaas, F. Roux, E. Rodriguez, Trends Cogn. Sci. 14, 72 (2010) CrossRefGoogle Scholar
  2. 2.
    S.R. Cobb, E.H. Buhl, K. Halasy, P. Somogyi, Nature 378, 75 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    A.K. Engel, P. König, A.K. Kreiter, W. Singer, Science 252, 1177 (1991) ADSCrossRefGoogle Scholar
  4. 4.
    M. Perc, Phys. Rev. E 72, 016207 (2005) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Perc, Europhys. Lett. 72, 712 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    M. Perc, Chem. Phys. Lett. 410, 49 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    O. Carrillo, M.A. Santos, J. García-Ojalvo, J.M. Sancho, Phys. Rev. Lett. 65, 452 (2004) Google Scholar
  8. 8.
    X.J. Sun, M. Perc, Q.S. Lu, J. Kurths, Chaos Soliton. Fract. 18, 023102 (2008) Google Scholar
  9. 9.
    P. Jung, G. Mayer-Kress, Phys. Rev. Lett. 74, 2130 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    S.J. Schiff, T. Sauer, R. Kumar, S.L. Weinstein, Neuroimage 28, 1043 (2005) CrossRefGoogle Scholar
  11. 11.
    J. Viventi, et al., Nat. Neurosci. 14, 1599 (2011) CrossRefGoogle Scholar
  12. 12.
    J.Y. Wu, X.Y. Huang, C. Zhang, Neuroscientist 14, 487 (2008) CrossRefGoogle Scholar
  13. 13.
    X.Y. Huang, et al., J. Neurosci. 24, 9897 (2004) CrossRefGoogle Scholar
  14. 14.
    X.Y. Huang, W. Xu, J. Liang, K. Takagaki, X. Gao, J.Y. Wu, Neuron 68, 978 (2010) CrossRefGoogle Scholar
  15. 15.
    S.J. Schiff, X. Huang, J.Y. Wu, Phys. Rev. Lett. 98, 178102 (2007) ADSCrossRefGoogle Scholar
  16. 16.
    K.M. Stiefel, B.S. Gutkin, T.J. Sejnowski, PLoS One 3, e3947 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Y. Tao, H.G. Gu, X.L. Ding, Int. J. Mod. Phys. B 31, 1750179 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    W.W. Xiao, H.G. Gu, M.R. Liu, Sci. China Tech. Sci. 59, 1943 (2016) CrossRefGoogle Scholar
  19. 19.
    R. Wang, J.J. Li, M.M. Du, J. Lei, Y. Wu, Commun. Nonlinear Sci. Numer. Simulat. 40, 80 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    H.G. Gu, B. Jia, Y.Y. Li, G.R. Chen, Physica A 392, 1361 (2013) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    X.J. Sun, Q.S. Lu, Chin. Phys. B 19, 040504 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    Z. Tang, Y.Y. Li, L. Xi, B. Jia, H.G. Gu, Commun. Theor. Phys. 57, 61 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wu, J.J. Li, S.B. Liu, J.Z. Pang, M.M. Du, P. Lin, Cogn. Neurodyn. 7, 431 (2013) CrossRefGoogle Scholar
  24. 24.
    Y.Y. Li, B. Jia, H.G. Gu, S.C. An, Commun. Theor. Phys. 57, 817 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    Y.Y. Li, H.G. Gu, Int. J. Bifur. Chaos 25, 1550104 (2015) CrossRefGoogle Scholar
  26. 26.
    J. Ma, Y. Xu, C. Wang, W. Jin, Physica A 461, 586 (2016) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Perc, New J. Phys. 7, 252 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    Q.Y. Wang, M. Perc, Z.S. Duan, G.R. Chen, Int. J. Mod. Phys. B 24, 1201 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    J. Ma, H.X. Qin, X.L. Song, R.T. Chu, Int. J. Mod. Phys. B 29, 1450239 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    X.J. Sun, X. Shi, Sci. China Tech. Sci. 57, 879 (2014) CrossRefGoogle Scholar
  31. 31.
    S.B. Liu, Y. Wu, J.J. Li, Y. Xie, N. Tan, Nonlinear Dyn. 73, 1055 (2013) CrossRefGoogle Scholar
  32. 32.
    Y.Y. Li, H.M. Zhang, C.L. Wei, M.H. Yang, H.G. Gu, W. Ren, Chin. Phys. Lett. 26, 030504 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    J. Ma, Y. Wu, H. Ying, Y. Jia, Chin. Sci. Bull. 56, 151 (2011) CrossRefGoogle Scholar
  34. 34.
    B.C. Zhou, W. Xu, Chaos Soliton. Fract. 38, 1146 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    K.L. Yung, Y.M. Lei, Y. Xu, Chin. Phys. B 19, 010503 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    J. Ma, X.L. Song, W.Y. Jin, C.N. Wang, Chaos Soliton. Fract. 80, 31 (2015) ADSCrossRefGoogle Scholar
  37. 37.
    H.X. Qin, J. Ma, C.N. Wang, R.T. Chu, Sci. China Phys. Mech. 57, 1918 (2014) CrossRefGoogle Scholar
  38. 38.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017) CrossRefGoogle Scholar
  39. 39.
    E. Yilmaz, V. Baysal, M. Ozer, M. Perc, Physica A 444, 538 (2016) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    X. Yang, Y. Yu, Z. Sun, Chaos 27, 083117 (2017) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    C.N. Wang, et al., Complexity 5436737, 1 (2017) Google Scholar
  42. 42.
    H.X. Qin, J. Ma, C.N. Wang, Y. Wu, PLoS One 9, e100849 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    E. Yilmaz, V. Baysal, M. Perc, M. Ozer, Sci. China Tech. Sci. 59, 364 (2016) CrossRefGoogle Scholar
  44. 44.
    H.T. Wang, Y. Chen, Physica A 462, 321 (2016) ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Y.B. Gong, B.Y. Wang, H.J. Xie, Biosystems 150, 132 (2016) CrossRefGoogle Scholar
  46. 46.
    Q. Wang, Y.B. Gong, Y.N. Wu, Eur. Phys. J. B 88, 103 (2015) ADSCrossRefGoogle Scholar
  47. 47.
    A. Bacci, J.R. Huguenard, D.A. Prince, J. Neurosci. 23, 859 (2003) CrossRefGoogle Scholar
  48. 48.
    A. Bacci, J.R. Huguenard, Neuron 49, 119 (2006) CrossRefGoogle Scholar
  49. 49.
    D.Q. Guo, et al., Europhys. Lett. 114, 30001 (2016) ADSCrossRefGoogle Scholar
  50. 50.
    R. Saada, N. Miller, I. Hurwitz, A.J. Susswein, Curr. Biol. 19, 479 (2009) CrossRefGoogle Scholar
  51. 51.
    S.R. Cobb, et al., Neuroscience 79, 629 (1997) CrossRefGoogle Scholar
  52. 52.
    H.V.D. Loos, E.M. Glaser, Brain Res. 48, 355 (1972) CrossRefGoogle Scholar
  53. 53.
    C. Pouzat, A. Marty, J. Physiol. 509, 777 (1998) CrossRefGoogle Scholar
  54. 54.
    G. Tamás, E.H. Buhl, P. Somogyi, J. Neurosci. 17, 6352 (1997) CrossRefGoogle Scholar
  55. 55.
    Z.G. Zhao, H.G. Gu, Sci. Rep. 7, 6760 (2017) ADSCrossRefGoogle Scholar
  56. 56.
    C. Morris, H. Lecar, Biophys J. 35, 193 (1981) ADSCrossRefGoogle Scholar
  57. 57.
    T. Tateno, K. Pakdaman, Chaos Soliton. Fract. 14, 511 (2004) Google Scholar
  58. 58.
    K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara, H. Kawakami, Neurocomputing 69, 293 (2006) CrossRefGoogle Scholar
  59. 59.
    D. Somers, N. Kopell, Biol. Cybern. 68, 393 (1993) CrossRefGoogle Scholar
  60. 60.
    I. Belykh, E. de Lange, M. Hasler, Phys. Rev. Lett. 94, 188101 (2005) ADSCrossRefGoogle Scholar
  61. 61.
    B. Ermentrout, Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students (SIAM, Philadelphia, 2002) Google Scholar
  62. 62.
    A. Dhooge, W. Govaerts, Y.A. Kuznetsov, ACM Trans. Math. Softw. 29, 141 (2003) CrossRefGoogle Scholar
  63. 63.
    J. Rinzel, G.B. Ermentrout, Analysis of neuronal excitability and oscillations, in Methods in Neuronal Modeling: From Ions to Networks (The MIT Press, Cambridge, 1998), pp. 251–292 Google Scholar
  64. 64.
    E.M. Izhikevich, Int. J. Bifur. Chaos 10, 1171 (2000) MathSciNetCrossRefGoogle Scholar
  65. 65.
    B.C. Bag, C.K. Hu, Phys. Rev. E 75, 042101 (2007) ADSCrossRefGoogle Scholar
  66. 66.
    P. Hänggi, P. Jung, C. Zerbe, F. Moss, J. Stat. Phys. 70, 25 (1993) ADSCrossRefGoogle Scholar
  67. 67.
    Y.H. Zheng, Q.S. Lu, Q.Y. Wang, Int. J. Mod. Phys. C 20, 469 (2009) ADSCrossRefGoogle Scholar
  68. 68.
    Q.Y. Wang, H.H. Zhang, M. Perc, G.R. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 3979 (2012) ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    I. Belykh, R. Reimbayev, K. Zhao, Phys. Rev. E 91, 062919 (2015) ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    S. Jalil, I. Belykh, A. Shilnikov, Phys. Rev. E 85, 036214 (2012) ADSCrossRefGoogle Scholar
  71. 71.
    J.X. Chen, M.M. Guo, J. Ma, Europhys. Lett. 113, 38004 (2016) ADSCrossRefGoogle Scholar
  72. 72.
    J.X. Chen, H. Zhang, L.Y. Qiao, H. Liang, W.G. Sun, Commun. Nonlinear Sci. Numer. Simul. 54, 202 (2018) ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    A. Bogaard, J. Parent, M. Zochowski, V. Booth, J. Neurosci. 29, 1677 (2009) CrossRefGoogle Scholar
  74. 74.
    R. Reimbayev, I. Belykh, Int. J. Bifur. Chaos 24, 1440013 (2014) CrossRefGoogle Scholar
  75. 75.
    R. Reimbayev, K. Daley, I. Belykh, Philos. Trans. Royal Soc. A 375, 20160282 (2017) ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Z.G. Zhao, H.G. Gu, Procedia IUTAM 22, 160 (2017) CrossRefGoogle Scholar
  77. 77.
    S. Jalil, I. Belykh, A. Shilnikov, Phys. Rev. E 81, 045201 (2010) ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    I. Belykh, A. Shilnikov, Phys. Rev. Lett. 101, 078102 (2008) ADSCrossRefGoogle Scholar
  79. 79.
    H.G. Gu, B.B. Pan, G.R. Chen, L.X. Duan, Nonlinear Dyn. 78, 391 (2014) CrossRefGoogle Scholar
  80. 80.
    H.G. Gu, B.B. Pan, Nonlinear Dyn. 81, 2107 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuye Li
    • 1
    • 2
  • Bing Jia
    • 3
  • Xiaoli Zhang
    • 1
    • 2
  • Yongxia Yang
    • 1
    • 2
  1. 1.School of mathematics and statisticsChifeng UniversityChifengP.R. China
  2. 2.Institute of applied mathematicsChifeng UniversityChifengP.R. China
  3. 3.Department of Physiology and Biophysics, School of Life SciencesFudan UniversityShanghaiP.R. China

Personalised recommendations