The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 933–942 | Cite as

Design of high-accuracy eight-channel surface electromyography acquisition system and its application

  • Chao Mi
  • Tiantong Zhou
  • Bin Wei
  • Yi Wang
  • Ling Zou
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences


The surface electromyography (sEMG) acquisition system has the advantages of small size, high precision, low power consumption and easy operation. We have developed a low-cost and portable eight-channel sEMG acquisition system, in which consists of the related analog front end (AFE), main control unit (MCU) and power supply system. The AFE circuit converts the sEMG signal to the digital signal after filtering the direct current and the two stage amplification. The MCU controls the analog-to-digital converter (ADC) using serial peripheral interface (SPI), packages the data and sends the data to the android through a high-speed wireless module. The power supply system provides stable voltage source and can be powered by battery. Experimental results show that the designed eight-channel sEMG acquisition system exhibits an excellent electrical performance with the amplifier resolution of 8.1 μV, the system noise of lower than 15.3 μV, the sampling rate of 1000 Hz and power consumption of about 30.7 mW. The recognition rate is as high as 98% using support vector machines when detecting normal and fatigue state. This device can be applied in the fields of family health monitoring and the detection of the muscle state in daily life and work.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Heinrichs, Physiotherapy 84, 405 (1998) Google Scholar
  2. 2.
    R. Hu, Y. Li, W. Xu, L. Cheng, H. Ren, J. Voice Found. 31, 126.e1 (2015) CrossRefGoogle Scholar
  3. 3.
    M. Dasog, K. Koirala, P. Liu, E.A. Clancy, IEEE Trans. Neural Syst. Rehabil. Eng. 22, 664 (2014) CrossRefGoogle Scholar
  4. 4.
    F. Duan, L. Dai, IEEE Trans. Ind. Electron. 64, 4276 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    P. Pavitra, P. Sadasivan, IEEE Eng. Med. Biol. Soc. 26, 608 (2004) Google Scholar
  6. 6.
    M. Liang, C. Damien, B. Fouad, Z. Wei, H. Bo, G. Francois, Int. J. Ind. Ergon. 41, 10 (2011) CrossRefGoogle Scholar
  7. 7.
    P.K. Edwards, J.R. Ebert, C. Littlewood, T. Ackland, A. Wang, J. Orthop. Sports Phys. Therapy 1, 1 (2017) Google Scholar
  8. 8.
    C. Huang, X. Chen, S. Cao, B. Qiu, X. Zhang, J. Neural Eng. 14, 046005 (2017) ADSCrossRefGoogle Scholar
  9. 9.
    A.C.M.V. Rijn, A. Peper, C.A. Grimbergen, Med. Biol. Eng. Comput. 28, 389 (1990) CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, L. Dai, Y.H. Luo, S. Huo, IEEE Int. Conf. Electron. Meas. Instrum. 10, 132 (2011) Google Scholar
  11. 11.
    A. Dutta, R. Kobetic, R. Triolo, ASME J. Devices 2, 027565 (2008) CrossRefGoogle Scholar
  12. 12.
    E. Koutsos, P. Georgiou, IEEE Int. Symp. Circuits Syst. 10, 1388 (2014) Google Scholar
  13. 13.
    Datasheet, ADS1278, quad/octal, simultaneous sampling, 24bit analogto-digital converters. Texas Instruments, 2009 Google Scholar
  14. 14.
    F.N. Guerrero, E.M. Spinelli, M.A. Haberman, IEEE Transact. Biomed. Circuits Syst. 10, 787 (2016) CrossRefGoogle Scholar
  15. 15.
    YY/T 1095-2015, Myoelectric biofeedback equipment Google Scholar
  16. 16.
    T. Muehlemann, D. Haensse, M. Wolf, Opt. Express 16, 10323 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    N.L. Everdell, D. Airantzis, C. Kolvya, T. Suzuki, C.E. Elwell, Med. Eng. Phys. 35, 1692 (2013) CrossRefGoogle Scholar
  18. 18.
    D.R. Rogers, D.T. MacIsaac, J. Electromyogr. Kinesiol. 21, 811 (2011) CrossRefGoogle Scholar
  19. 19.
    Z. Ju, G. Ouyang, K. Wilamowska, H. Liu, IEEE Sens. J. 13, 3302 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    X. Xi, M. Tang, S.M. Miran, Z. Luo, Sensors 17, 1229 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chao Mi
    • 1
  • Tiantong Zhou
    • 1
  • Bin Wei
    • 2
  • Yi Wang
    • 3
  • Ling Zou
    • 1
  1. 1.School of Information Science and Engineering, Changzhou UniversityChangzhouP.R. China
  2. 2.School of Mechatronic Engineering and Automation, Shanghai UniversityShanghaiP.R. China
  3. 3.University of PlymouthPlymouthUK

Personalised recommendations