Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 799–809 | Cite as

Autaptic modulation-induced neuronal electrical activities and wave propagation on network under electromagnetic induction

  • Mengyan Ge
  • Ying Xu
  • Zhaokang Zhang
  • Yuxu Peng
  • Wenjing Kang
  • Lijian Yang
  • Ya Jia
Regular Article
  • 82 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

Based on an improved HR neuron model, the effects of electrical and chemical autapses on the firing activities of single neurons are studied, and the wave propagation in forward feedback neural network is also discussed by considering autapstic regulation under different intensities of electromagnetic induction. It is found that the electrical activities of single neuron can be changed by exerting excitatory or inhibitory of electrical and chemical autapses. With different feedback gains of electromagnetic induction current, membrane potential shows the oscillatory solutions and steady states. Under the condition of different autapse or electromagnetic induction, the propagation of electrical activities caused by the central neuron is transformed in the forward feedback network. Moreover, the spatial synchronization of the network will be changed by choosing different coupling intensities and feedback gains. It is proved that the electrical and chemical autapses play a significant role in firing modes of single neuron and the wave propagation of the forward feedback networks under the electromagnetic induction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Guantes, G.G. de Polavieja, Phys. Rev. E 71, 011911 (2005) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Tsumoto et al., Neurocomputing 69, 293 (2006) CrossRefGoogle Scholar
  3. 3.
    D.Q. Wei, X.S. Luo, Y.L. Zou, Eur. Phys. J. B 63, 279 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    A. Shilnikov, Nonlinear Dyn. 68, 305 (2012) CrossRefGoogle Scholar
  5. 5.
    J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982) ADSCrossRefGoogle Scholar
  6. 6.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) CrossRefGoogle Scholar
  7. 7.
    L.L. Lu et al., Sci. China Tech. Sci.,  https://doi.org/10.1007/s11431-017-9217-x
  8. 8.
    Y. Xu et al., Neurocomputing 283, 196 (2018) CrossRefGoogle Scholar
  9. 9.
    A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Manjarrez et al., Neurosci. Lett. 326, 93 (2002) CrossRefGoogle Scholar
  11. 11.
    W. Wang, G. Perez, H.A. Cerderia, Phys. Rev. E 47, 2893 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Zhang, Z.J. Cao, N.J. Wu, H.P. Ying, G. Hu, Phys. Rev. Lett. 94, 188301 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    B. Sancristóal, J.M. Sancho, J. Garcia-Ojalvo, Eur. Phys. J. Special Topics 187, 189 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    M. Gosak, M. Marko, M. Perc, Physica D 238, 506 (2009) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Zhan, G. Hu, J.Z. Yang, Phys. Rev. E 62, 2963 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    F. Li, C.N. Wang, J. Ma, Chin. Phys. B 22, 100502 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    L.J. Yang et al., Phys. Rev. E 86, 016209 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    G. Schmid, I. Goychuk, P. Hänggi, Europhys. Lett. 56, 22 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gao, J. Wang, Phys. Rev. E 83, 2345 (2011) CrossRefGoogle Scholar
  21. 21.
    Q. Wang, M. Perc, Z. Duan, G. Chen, Chaos 19, 225 (2009) Google Scholar
  22. 22.
    Z.Q. Liu et al., Physica A 389, 2642 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017) CrossRefGoogle Scholar
  24. 24.
    J. Ma et al. Neurocomputing 167, 378 (2015) CrossRefGoogle Scholar
  25. 25.
    J.M. Bekkers, C.F. Stevens, Proc. Natl. Acad. Sci. USA 88, 7834 (1991) ADSCrossRefGoogle Scholar
  26. 26.
    R. Saada et al., Curr. Biol. 19, 479 (2009) CrossRefGoogle Scholar
  27. 27.
    D.Q. Guo et al., Europhys. Lett. 114, 30001 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    L.F. Wang, K. Qiu, Y. Jia, Chin. Phys. B 26, 030503 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    C.N. Wang et al., Complexity 2017, 5436737 (2017) Google Scholar
  30. 30.
    Y. Xu et al., Sci. Rep. 7, 43452 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Xu et al., Chaos Soliton Frac. 104, 435 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    L. Lu et al., Complexity 2017, 7628537 (2017) Google Scholar
  33. 33.
    M.Y. Ge, Y. Jia, Y. Xu, L.J. Yang, Nonlinear Dyn. 91, 515 (2018) CrossRefGoogle Scholar
  34. 34.
    J.P. Baltanas, J.M. Caado, Phys. Rev. E 65, 041915 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    U.S. Thounaojam, P.R. Sharma, M.D. Shrimali, Eur. Phys. J. Special Topics 225, 17 (2016) ADSCrossRefGoogle Scholar
  36. 36.
    J.M.G. Vilar, J.M. Rubi, Phys. Rev. Lett. 78, 2882 (1997) ADSCrossRefGoogle Scholar
  37. 37.
    Y. Jiang, Phys. Rev. E 71, 057103 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    M. Perc, Chem. Phys. Lett. 410, 49 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    Q. Wang, Y.B. Gong, Y.A. Wu, Eur. Phys. J. B 88, 103 (2015) ADSCrossRefGoogle Scholar
  40. 40.
    E. Yilmaz et al., Physica A 444, 538 (2016) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    E. Yilmaz et al., Sci. China Tech. Sci. 59, 364 (2016) CrossRefGoogle Scholar
  42. 42.
    H.G. Gu, B. Jia, Y.Y. Li, G.R. Chen, Physica A 392, 1361 (2013) ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Ma, X.L. Song, J. Tang, C.N. Wang, Neurocomputing 167, 378 (2015) CrossRefGoogle Scholar
  44. 44.
    K. Qiu et al., Sci. Rep. 7, 9890 (2017) ADSCrossRefGoogle Scholar
  45. 45.
    Y.G. Yao, M. Yi, D.J. Hou, Int. J. Mod. Phys. B 31, 1750204 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    A.A.M. Yousif et al., Chin. Phys. B 27, 030501 (2018) ADSCrossRefGoogle Scholar
  47. 47.
    Q.M. Pei et al., Phys. Rev. E 92, 012721 (2015) ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    H.W. Wang et al., Chin. Phys. B. 26, 128702 (2017) ADSCrossRefGoogle Scholar
  49. 49.
    Y.G. Yao, C.Z. Ma, C.J. Wang, M. Yi, R. Gui, Physica A 492, 1247 (2018) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    K.F. Gao, Y.J. Zhao, J. Phys. Chem. B 121, 2952 (2017) CrossRefGoogle Scholar
  51. 51.
    Y.G. Yao et al., Complexity 2018, 5632650 (2018) Google Scholar
  52. 52.
    Y.G. Yao, J. Ma, J. Cogn. Neurodyn. 12, 343 (2018) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanP.R. China

Personalised recommendations