Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 767–776 | Cite as

Effects of temperature and electromagnetic induction on action potential of Hodgkin–Huxley model

  • Lulu Lu
  • John Billy Kirunda
  • Ying Xu
  • Wenjing Kang
  • Run Ye
  • Xuan Zhan
  • Ya Jia
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

Based on an improved the Hodgkin–Huxley (HH) neuron model which is driven by the electromagnetic induction, the effects of temperature and electromagnetic induction on the action potential of neuron are investigated by numerical computations. It is very interesting that, under the fixed condition of electromagnetic induction, there is a region for the electrical activity of neuron in the external current and temperature parameters plane, the region of electrical firing is similar to the Arnold’ tongue-like structure, and the Arnold’ tongue originates from the nonlinear variation of temperature with the increasing of threshold external current. The effects of temperature and electromagnetic induction on neuronic electrical activity are respectively discussed by using numerical simulations. Our results provide new insights into the roles of temperature in the improved HH neuron model, the existence of Arnold’ tongue-like structure might give some insights for the treatment of neurological diseases such as the epilepsia.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Lee, S.G. Lee, S. Kim, Eur. Phys. J. B 85, 400 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    E. Yilmaz, M. Uzuntarla, M. Ozer, M. Perc, Physica A 392, 5735 (2013) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M. Ozer, L.J. Graham, Eur. Phys. J. B 61, 499 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Jia, L.J. Yang, Chin. Phys. Lett. 21, 1666 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    L. Wang, S. Liu, Neurophysiology 44, 265 (2012) CrossRefGoogle Scholar
  6. 6.
    Z.G. Esfahani, L.L. Gollo, V. Alireza, Sci. Rep. 6, 23471 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    Y.G. Yao, C.Z. Ma, C.J. Wang, Physica A 492, 1247 (2018) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Y.G. Yao, J. Ma, J. Cogn. Neurodyn., 12, 343 (2018) CrossRefGoogle Scholar
  9. 9.
    Y.G. Yao, L.J. Yang, Complexity, 2018, 5632650 (2018) Google Scholar
  10. 10.
    C.C. Chow, J.A. White, Biophys. J. 71, 3013 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    Y. Xu, Y. Jia, M.Y. Ge, Neurocomputing 283, 196 (2018) CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, J.A. Boulant, J. Physiol. 564, 245 (2005) CrossRefGoogle Scholar
  13. 13.
    N. Arispe, J.C. Diaz, O. Simakova, Biochim. Biophys. Acta. 1768, 1952 2007 Google Scholar
  14. 14.
    T.M. Szabo, T. Brookings, T. Preuss, D.S. Faber, J. Neurophysiol. 100, 2997 (2008) CrossRefGoogle Scholar
  15. 15.
    C.Q. Yuan, T.J. Zhao, Chin. Phys. Lett. 26, 239 (2009) Google Scholar
  16. 16.
    J.K. Tiwari, S.K. Sikdar, Eur. Biophys. J. 28, 338 (1999) CrossRefGoogle Scholar
  17. 17.
    K. Benndorf, R. Koopmann, Biophys. J. 65, 1585 (1993) CrossRefGoogle Scholar
  18. 18.
    A.L. Hodgkin, B. Katz, J. Physiol. 109, 240 (1949) CrossRefGoogle Scholar
  19. 19.
    A.L. Gorman, M.F. Marmor, J. Physiol. 210, 919 (1970) CrossRefGoogle Scholar
  20. 20.
    K.D. Micheva, S.J. Smith, J. Neurosci. 25, 7481 (2005) CrossRefGoogle Scholar
  21. 21.
    N.G. Hyun et al., Korean J. Physiol. 15, 371 (2011) CrossRefGoogle Scholar
  22. 22.
    K. Qiu, K.F. Gao, Sci. Rep. 7, 9890 (2017) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Xu, Y. Jia, J. Ma, Sci. Rep. 8, 1349 (2018) ADSCrossRefGoogle Scholar
  24. 24.
    L.F. Wang, K. Qiu, Y. Jia, Chin. Phys. B. 26, 030503 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    H.W. Wang, K.L. Wang, Chin. Phys. B. 26, 128702 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    A.A.M. Yousif, L.L. Lu, M.Y. Ge, Chin. Phys. B 27, 030501 (2018) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Xu, Y. Jia, J. Ma, Chaos Solitons Fractals 104, 435 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    M. Chen, Y. Wang, H. Wang, W. Ren, X. Wang, Nonlinear Dyn. 88, 2491 (2017) CrossRefGoogle Scholar
  29. 29.
    H. Wang, Y. Chen, Nonlinear Dyn. 85, 881 (2016) CrossRefGoogle Scholar
  30. 30.
    G. Zhang, F. Wu, C. Wang, J. Ma, Int. J. Mod. Phys. B 31, 1750180 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Qian, F. Liu, K. Yang, G. Zhang, C. Yao, J. Ma, Sci. Rep. 7, 11885 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    Y.G. Yao, C.Z. Ma, C.J. Wang, M. Yi, R. Gui, Physica A 492, 1247 (2018) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Falahian, M.M. Dastjerdi, M. Molaie, Nonlinear Dyn. 81, 1951 (2015) CrossRefGoogle Scholar
  34. 34.
    M. Girardischappo, O. Kinouchi, M.H.R. Tragtenberg, Phys. Rev. E 88, 2589 (2012) Google Scholar
  35. 35.
    W.W. Xiao, H.G. Gu, M.R. Liu, Sci. China Tech. Sci. 59, 1 (2016) Google Scholar
  36. 36.
    Y.Y. Li, H.G. Gu, Nonlinear Dyn. 87, 2541 (2017) CrossRefGoogle Scholar
  37. 37.
    Z.G. Zhao, H.G. Gu, Advances in Cognitive Neurodynamics (Springer, Singapore, 2016) Google Scholar
  38. 38.
    M. Lv, J. Ma, Neurocomputing 205, 375 (2016) CrossRefGoogle Scholar
  39. 39.
    J. Ma, F. Wu, T. Hayat, P. Zhou, J. Tang, Physica A 486, 508 (2017) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    L.L. Lu, et al., Sci. China Tech. Sci.,  https://doi.org/10.1007/s11431-017-9217-x
  41. 41.
    Y. Xu, H. Ying, Y. Jia, J. Ma, T. Hayat, Sci Rep. 7, 43452 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    M.Y. Ge, Y. Jia, Y. Xu, L. Yang, Nonlinear Dyn. 91, 515 (2018) CrossRefGoogle Scholar
  43. 43.
    J. Li, M. Zheng, H. Cao, High Voltage Engineering 42, 1168 (2016) Google Scholar
  44. 44.
    R. Chen, J. Classen, C. Gerloff, Neurology 48, 1398 (1997) CrossRefGoogle Scholar
  45. 45.
    M. Hallett et al., Nature 406, 147 (2000) ADSCrossRefGoogle Scholar
  46. 46.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) CrossRefGoogle Scholar
  47. 47.
    S.G. Lee, A. Neeiman, S. Kim, Phys. Rev. E 57, 3292 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017) CrossRefGoogle Scholar
  49. 49.
    L.L. Lu, Y. Jia, Complexity 2017, 7628537 (2017) Google Scholar
  50. 50.
    L.J. Yang, Y. Jia, Biosystems 81, 267 (2005) CrossRefGoogle Scholar
  51. 51.
    T. Höffer et al., Biophys. J. 77, 1244 (1999) CrossRefGoogle Scholar
  52. 52.
    D. Wu, Y. Jia, X. Zhan, L. Yang, Q. Liu, Biophys. Chem. 113, 145 (2005) CrossRefGoogle Scholar
  53. 53.
    A.M. Correa, F. Bezanilla, R. Latorre, Biophys. J. 61, 1332 (1992) CrossRefGoogle Scholar
  54. 54.
    J.C. Oakley, F. Kalume, Proc. Natl. Acad. Sci. USA 106, 3994 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biophysics and Department of Physics, Central China Normal UniversityWuhanP.R. China

Personalised recommendations