Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 837–850 | Cite as

Multistability and coexisting attractors in a fractional order Coronary artery system

  • Karthikeyan Rajagopal
  • Viet-Thanh Pham
  • Fawaz E. Alsaadi
  • Fuad E. Alsaadi
  • Anitha Karthikeyan
  • Prakash Duraisamy
Regular Article
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

The present study investigates the dynamical properties of a fractional order coronary artery system and its control with uncertainties in the parameters. The fractional order model of the coronary artery system (FOCA) is derived using the Grünwald–Letnikov method and the properties of the FOCA system are discussed. Bifurcation plots of the system in the parameter space are derived and presented. The novelty of the paper is the identification of the multistable feature shown by the FOCA system, which has not been discussed in the research literature. Various coexisting attractors are also presented to show the multistability. An adaptive sliding mode controller is designed to stabilize the chaotic oscillations in the FOCA system. Numerical simulations are conducted to indicate the effectiveness of the controller.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.L. Goldberger, D.R. Rigney, J. Mietus, E.M. Antman, S. Greenwald, Experientia 44, 983 (1988) CrossRefGoogle Scholar
  2. 2.
    B.S. Stambler, J.P. Morgan, J. Mietus, G.B. Moody, D.R. Rigney, A.L. Goldberger, J. Mol. Cell. Cardiol. Suppl. II 21, S16 (1989) Google Scholar
  3. 3.
    J.E. Skinner, A.L. Goldberger, G. Mayer-Kress, R.E. Ideker, Nat. Biotechnol. 8, 1018 (1990) CrossRefGoogle Scholar
  4. 4.
    J.E. Skinner, M. Molnar, T. Vybiral, M. Mitra, Integr. Physiol. Behav. Sci. 27, 39 (1992) CrossRefGoogle Scholar
  5. 5.
    D. Creanga, C. Nadejde, P. Gasner, Rom. J. Phys. 56, 177 (2011) Google Scholar
  6. 6.
    I. Tsuda, T. Tahara, H. Iwanaga, Int. J. Bifurcat. Chaos 2, 313 (1992) CrossRefGoogle Scholar
  7. 7.
    T.M. Griffith, D.H. Edwards, Am. J. Physiol. 266, H1801 (1994) Google Scholar
  8. 8.
    Y. Shi, Discrete Dyn. Nat. Soc. 2012, 1 (2012) CrossRefGoogle Scholar
  9. 9.
    M.R. Guevara, L. Glass, A. Shrier, Science 214, 1350 (1981) ADSCrossRefGoogle Scholar
  10. 10.
    J. Puentes, C. Roux, M. Garreau, J.L. Coatrieux, IEEE Trans. Med. Imaging 17, 857 (1998) CrossRefGoogle Scholar
  11. 11.
    C. Gong, Y. Li, X. Sun, J. Appl. Sci. 24, 604 (2006) Google Scholar
  12. 12.
    M. Ortiz-Vargas, H. Puebla, in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2006) Google Scholar
  13. 13.
    W. Li, Int. J. Syst. Sci. 43, 21 (2012) CrossRefGoogle Scholar
  14. 14.
    C.J. Lin, S.K. Yang, H.T. Yau, Comput. Math. Appl. 64, 988 (2012) CrossRefGoogle Scholar
  15. 15.
    C.C. Wang, H.T. Yau, Abstr. Appl. Anal. 2013, 1 (2013) Google Scholar
  16. 16.
    W.S. Wu, Z.S. Zhao, J. Zhang, L.K. Sun, Nonlinear Dyn. 87, 1773 (2017) CrossRefGoogle Scholar
  17. 17.
    P. Roy, S. Ray, S. Bhattacharya, in Proceedings of the 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC) (2016) Google Scholar
  18. 18.
    K. Rajagopal, A. Karthikeyan, P. Duraisamy, Nonlinear Eng. 5, 287 (2016) ADSGoogle Scholar
  19. 19.
    K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, P. Duraisamy, Elect. Eng. 99, 721 (2017) CrossRefGoogle Scholar
  20. 20.
    K. Rajagopal, A. Karthikeyan, P. Duraisamy, Nonlinear Eng. 6, 79 (2017) ADSCrossRefGoogle Scholar
  21. 21.
    K. Rajagopal, A. Karthikeyan, P. Duraisamy, Shock Vib. 2017, 1 (2017) CrossRefGoogle Scholar
  22. 22.
    K. Rajagopal, L. Guessas, S. Vaidyanathan, A. Karthikeyan, A. Srinivasan, Math. Probl. Eng. 2017, 1 (2017) CrossRefGoogle Scholar
  23. 23.
    K. Rajagopal, A. Karthikeyan, A. Srinivasan, Nonlinear Dyn. 87, 2281 (2017) CrossRefGoogle Scholar
  24. 24.
    K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Complexity 2017, 1 (2017) Google Scholar
  25. 25.
    K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, A. Srinivasan, Alexandria Eng. J.,  https://doi.org/10.1016/j.aej.2017.01.044
  26. 26.
    A. Karthikeyan, K. Rajagopal, Complexity 2017, 1 (2017) Google Scholar
  27. 27.
    M.P.A.M. Borjkhani, Complexity 20, 37 (2014) MathSciNetCrossRefGoogle Scholar
  28. 28.
    C.L. MacDonald, N. Bhattacharya, B.P. Sprouse, G.A. Silva, J. Comput. Phys. 297, 221 (2015) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005) MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, 1998) Google Scholar
  31. 31.
    M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, A.G. Radwan, AEU-Int. J. Electron. Commun. 78, 162 (2017) CrossRefGoogle Scholar
  32. 32.
    I. Petráš, Fractional-Order Nonlinear Systems – Modeling, Analysis and Simulation (Springer, Berlin, 2011) Google Scholar
  33. 33.
    A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    M.F. Danca, Nonlinear Dyn. 81, 227 (2015) CrossRefGoogle Scholar
  35. 35.
    J. Kengne, J.C. Chedjou, T.F. Fozin, K. Kyamakya, G. Kenne, Nonlinear Dyn. 77, 373 (2014) CrossRefGoogle Scholar
  36. 36.
    J. Kengne, Int. J. Bifurcat. Chaos 25, 1550052 (2015) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.N. Pisarchik, U. Feudel, Phys. Rep. 540, 167 (2014) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    C. Hens, S.K. Dana, U. Feudel, Chaos 25, 053112 (2015) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Kengne, Z.T. Njitacke, H. Fotsin, Nonlinear Dyn. 83, 751 (2016) CrossRefGoogle Scholar
  40. 40.
    J. Kengne, A.N. Negou, D. Tchiotsop, Nonlinear Dyn. 88, 2589 (2017) CrossRefGoogle Scholar
  41. 41.
    J. Kengne, Nonlinear Dyn. 87, 363 (2017) CrossRefGoogle Scholar
  42. 42.
    Q. Lai, S. Chen, Optik 127, 3000 (2016) ADSCrossRefGoogle Scholar
  43. 43.
    Q. Lai, S. Chen, Int. J. Bifurcat. Chaos 26, 1650177 (2016) CrossRefGoogle Scholar
  44. 44.
    Q. Lai, S. Chen, Int. J. Control Autom. Syst. 14, 1124 (2016) CrossRefGoogle Scholar
  45. 45.
    Q. Lai, A. Akgul, X.W. Zhao, H. Pei, Int. J. Bifurcat. Chaos 27, 1750142 (2017) CrossRefGoogle Scholar
  46. 46.
    M. Laurent, N. Kellershohn, J.F. Hervagault, Med. Sci. 14, 1240 (1998) Google Scholar
  47. 47.
    M. Laurent, N. Kellershohn, Trends Biochem. Sci. 24, 418 (1999) CrossRefGoogle Scholar
  48. 48.
    Y. Li, Z. Lin, IEEE Trans. Nanobiosci. 12, 321 (2013) CrossRefGoogle Scholar
  49. 49.
    J.C. Sprott, Int. J. Bifurcat. Chaos 21, 2391 (2011) CrossRefGoogle Scholar
  50. 50.
    K. Konishi, M. Hirai, H. Kokame, Phys. Lett. A 245, 511 (1998) ADSCrossRefGoogle Scholar
  51. 51.
    V. Utkin, IEEE Trans. Autom. Control 22, 212 (1977) CrossRefGoogle Scholar
  52. 52.
    R.A. DeCarlo, S.H. Zak, G.P. Matthews, Proc. IEEE 76, 212 (1988) CrossRefGoogle Scholar
  53. 53.
    J.M. Nazzal, A.N. Natsheh, Chaos Soliton. Fract. 33, 695 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Karthikeyan Rajagopal
    • 1
  • Viet-Thanh Pham
    • 2
  • Fawaz E. Alsaadi
    • 3
  • Fuad E. Alsaadi
    • 4
  • Anitha Karthikeyan
    • 1
  • Prakash Duraisamy
    • 1
  1. 1.Center for Nonlinear Dynamics, Defence UniversityBishoftuEthiopia
  2. 2.Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Information Technology, Faculty of Computing and ITKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Electrical and Computer Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations