Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 895–905 | Cite as

Influence of non-Gaussian noise on a tumor growth system under immune surveillance

  • Lin Du
  • Qin Guo
  • Zhongkui Sun
Regular Article
  • 17 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

In this paper, the stationary probability distribution (SPD) function and the mean first passage time (MFPT) are investigated in a tumor growth model driven by non-Gaussian noise which is introduced to mimic random fluctuations in the levels of the immune system. Results demonstrate the different transitions induced by the strength of non-Gaussian noise under different immune coefficients and the dual roles of non-Gaussian noise in promoting host protection against cancer and in facilitating tumor escape from immune destruction. Additionally, it can be discovered that increases in noise strength, the degree of departure from Gaussian noise, and the immune coefficient can accelerate the extinction of tumor cells. Numerical simulations are performed, and their results present good agreement with the theoretical results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.D. Abarbanel, M.I. Rabinovich, Curr. Opin. Neurobiol. 11, 423 (2001) CrossRefGoogle Scholar
  2. 2.
    V. Toronov, T. Myllylä, V. Kiviniemi, V. Tuchin, Eur. Phys. J. Special Topics 222, 2607 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Nee, D. Butler, Phys. Ther. Sport 7, 36 (2006) CrossRefGoogle Scholar
  4. 4.
    E. Batlle, H. Clevers, Nat. Med. 23, 1124 (2017) CrossRefGoogle Scholar
  5. 5.
    V. Panzetta, M. De Menna, I. Musella, M. Pugliese, M. Quarto, P.A. Netti, S. Fusco, Cytoskeleton 74, 40 (2017) CrossRefGoogle Scholar
  6. 6.
    Y. Jiang, H. Gang, M. Ben-Kun, Phys. Rev. B 39, 4572 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    S. Kar, S.K. Banik, D.S. Ray, Phys. Rev. E 65, 061909 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    M. Molski, J. Konarski, Phys. Rev. E 68, 021916 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    D.A. Kessler, H. Levine, J. Stat. Phys. 158, 783 (2014) Google Scholar
  10. 10.
    R. Lefever, W. Horsthemke, Bull. Math. Biol. 41, 469 (1979) Google Scholar
  11. 11.
    G.P. Dunn, L.J. Old, R.D. Schreiber, Immunity 21, 137 (2004) CrossRefGoogle Scholar
  12. 12.
    R. Lefever, R. Garay, Local description of immune tumor rejection (North-Holland Biomedical Press: Elsevier, 1978) Google Scholar
  13. 13.
    W.-R. Zhong, Y.-Z. Shao, Z.-H. He, Phys. Rev. E 73, 060902 (2006) ADSCrossRefGoogle Scholar
  14. 14.
    T. Bose, S. Trimper, Phys. Rev. E, 79, 051903 (2009) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L.-C. Du, D.-C. Mei, Phys. Lett. A, 374, 3275 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    V. Dakos, S.R. Carpenter, W.A. Brock, A.M. Ellison, V. Guttal, A.R. Ives, S. Kefi, V. Livina, D.A. Seekell, E.H. van Nes, M. Scheffer, PLoS One 7, e41010 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    V. Dakos, F. Soler-Toscano, Ecol. Complex. 32, 144 (2017) CrossRefGoogle Scholar
  18. 18.
    I.A. van de Leemput, V. Dakos, M. Scheffer, E.H. van Nes, Ecosystems 21, 141 (2017) CrossRefGoogle Scholar
  19. 19.
    K. Wiesenfeld, D. Pierson, E. Pantazelou, C. Dames, F. Moss, Phys. Rev. Lett. 72, 2125 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    D. Nozaki, D.J. Mar, P. Grigg, J.J. Collins, Phys. Rev. Lett. 82, 2402 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    X. Dong, C. Zeng, F. Yang, L. Guan, Q. Xie, W. Duan, Physica A 492, 851 (2018) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Duarte, M. Vermelho, M. Lyra, Physica A 387, 1446 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    K. Kanazawa, T.G. Sano, T. Sagawa, H. Hayakawa, Phys. Rev. Lett. 114, 090601 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    P. Majee, G. Goswami, B.C. Bag, Chem. Phys. Lett. 416, 256 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    D. Valenti, C. Guarcello, B. Spagnolo, Phys. Rev. B 89, 214510 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Murray, in Mathematical Biology I: An Introduction, Interdisciplinary Applied Mathematics (Springer, New York, NY, USA, 2002), Vol. 17 Google Scholar
  27. 27.
    H. Fröhlich, Phys. Lett. A 51, 21 (1975) ADSCrossRefGoogle Scholar
  28. 28.
    K.A. Hossmann, D. Hermann, Bioelectromagnetics 24, 49 (2003) CrossRefGoogle Scholar
  29. 29.
    I. Yakymenko, O. Tsybulin, E. Sidorik, D. Henshel, O. Kyrylenko, S. Kyrylenko, Electromagn. Biol. Med. 35, 186 (2016) CrossRefGoogle Scholar
  30. 30.
    A. d’Onofrio, Phys. Rev. E 81, 021923 (2010) ADSCrossRefGoogle Scholar
  31. 31.
    A.S. Perelson, G. Weisbuch, Rev. Mod. Phys. 69, 1219 (1997) ADSCrossRefGoogle Scholar
  32. 32.
    P.C. Nowell, Tumor progression: a brief historical perspective, in Seminars in cancer biology (Elsevier, 2002), pp. 261–266 Google Scholar
  33. 33.
    J. Schmielau, O.J. Finn, Cancer Res. 61, 4756 (2001) Google Scholar
  34. 34.
    D.I. Gabrilovich, A.A. Hurwitz, in Tumor-induced immune suppression (Springer, 2008), Vol. 93, pp. 499–513 Google Scholar
  35. 35.
    L. Borland, Phys. Lett. A 245, 67 (1998) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    M. Fuentes, R. Toral, H.S. Wio, Physica A 295, 114 (2001) ADSCrossRefGoogle Scholar
  37. 37.
    M. Fuentes, H.S. Wio, R. Toral, Physica A 303, 91 (2002) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    H.S. Wio, R. Toral, Physica D 193, 161 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    C. Li, W. Da-Jin, K. Sheng-Zhi, Phys. Rev. E 52, 3228 (1995) ADSGoogle Scholar
  40. 40.
    R.L. Honeycutt, Phys. Rev. A 45, 604 (1992) ADSCrossRefGoogle Scholar
  41. 41.
    W.R. Zhong, Y.Z. Shao, Z.H. He, Phys. Rev. E 74, 011916 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    K. Lindenberg, B.J. West, J. Stat. Phys. 42, 201 (1986) Google Scholar
  43. 43.
    J. Masoliver, B.J. West, K. Lindenberg, Phys. Rev. A 35, 3086 (1987) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations