Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 7–9, pp 943–957 | Cite as

Fractional fuzzy entropy algorithm and the complexity analysis for nonlinear time series

  • Shaobo He
  • Kehui Sun
  • Rixing Wang
Regular Article
  • 36 Downloads
Part of the following topical collections:
  1. Nonlinear Effects in Life Sciences

Abstract

In this paper, fractional fuzzy entropy (FFuzzyEn) algorithm is designed by combing the concept of fractional information and fuzzy entropy (FuzzyEn) algorithm. Complexity of chaotic systems is analyzed and parameter choice of FFuzzyEn is investigated. It also shows that FFuzzyEn is effective for measuring dynamics of nonlinear time series and has better comparing results for different time series. Moreover, changes in the complexity of EEG signals from normal health persons and epileptic patients are observed. The results show that, compared with normal health persons, epileptic patients have the lowest complexity during seizure activity and relative lower complexity during seizure free intervals. The proposed method may be useful for EEG signal based physiological and biomedical analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Redelico, F. Traversaro, M. Garca, Entropy 19, 72 (2017) ADSCrossRefGoogle Scholar
  2. 2.
    S. Mukherjee, S.K. Palit, S. Banerjee, Physica A 439, 93 (2015) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Wu, R. Song, Entropy 19, 307 (2017) ADSCrossRefGoogle Scholar
  4. 4.
    Y. Chu, A.J. Yang, Comput. Theor. Nanos. 13, 4730 (2016) CrossRefGoogle Scholar
  5. 5.
    Y. Li et al., Measurement 77, 80 (2016) CrossRefGoogle Scholar
  6. 6.
    A.M. Lopes, J.A.T. Machado, Nonlinear Dyn. 84, 79 (2015) CrossRefGoogle Scholar
  7. 7.
    V. Srinivasan, C. Eswaran, N. Sriraam, IEEE Trans. Info. Tech. Biom. 11, 288 (2007) CrossRefGoogle Scholar
  8. 8.
    A. Thul, J. Lechinger, J. Donis, Clin. Neurophys. 127, 1419 (2016) CrossRefGoogle Scholar
  9. 9.
    F.C. Morabito, D. Labate, F.L. Foresta, Entropy 14, 1186 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    Q. Liu, Q. Wei, S.Z. Fan, Entropy 14, 978 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    M. Costa, A.L. Goldberger, C.K. Peng, Phys. Rev. Lett. 89, 068102 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Martin, A. Plastino, O.A. Rosso, Physica A 369, 439 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    A. Wolf, J.B. Swift, H.L. Swinney, Physica D 16, 285 (1985) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    F.M. Smits, C. Porcaro, C. Cottone, Plos One 11, e0149587 (2016) CrossRefGoogle Scholar
  15. 15.
    S.M.A. Pincus, Proc. Nat. Acad. Sci. USA 88, 2297 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Richman, J.R. Moorman, Am. J. Phys. Heart Circul. Physiol. 278, H2039 (2000) CrossRefGoogle Scholar
  17. 17.
    W.T. Chen, J. Zhuang, W.X. Yu, Med. Engine. Phys. 31, 61 (2009) CrossRefGoogle Scholar
  18. 18.
    J. Zheng, H. Pan, J. Cheng, Mech. Syst. Sign. Proc. 85, 746 (2017) CrossRefGoogle Scholar
  19. 19.
    K.H. Sun, S.B. He, L.Z. Yin, Acta Phys. Sin. 61, 130507 (2012) Google Scholar
  20. 20.
    P. Li, Y. Liu Cheng, Acta Phys. Sin. 62, 120512 (2013) Google Scholar
  21. 21.
    H. Azami, J. Escudero, Physica A 465, 261 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    S.B. He, K.H. Sun, X.Y. Mei, Eur. Phys. J. Plus 132, 1 (2017) CrossRefGoogle Scholar
  23. 23.
    V.E. Tarasov, G.M. Zaslavsky, Chaos 16, 023110 (2006) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    O.P. Agrawal, Nonlinear Dyn. 38, 323 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Machado, Entropy 16, 2350 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    A.M. Lopes, J.A.T. Machado, Nonlinear Dyn. 84, 79 (2015) CrossRefGoogle Scholar
  27. 27.
    K. Xu, J. Wang, Phys. Lett. A 381, 767 (2016) ADSCrossRefGoogle Scholar
  28. 28.
    W.H. Liu, K.H. Sun, C.X. Zhu, Opt. Lasers Eng. 84, 26 (2016) CrossRefGoogle Scholar
  29. 29.
    W.H. Liu, K.H. Sun, S.B. He, Nonlinear Dyn. 89, 2521 (2017) CrossRefGoogle Scholar
  30. 30.
    S.B. He, K.H. Sun, H.H. Wang, Math. Meth. Appl. Sci. 39, 2965 (2016) CrossRefGoogle Scholar
  31. 31.
    R.G. Andrzejak, K. Lehnertz, F. Mormann, Phys. Rev. E 64, 061907 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    S. Banerjee, S.K. Palit, S. Mukherjee, et al., Chaos 26, 033105 (2016) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer Science and Technology, Hunan University of Arts and ScienceChangdeP.R. China
  2. 2.School of Physics and Electronics, Central South UniversityChangshaP.R. China
  3. 3.Normal College, Hunan University of Arts and ScienceChangdeP.R. China

Personalised recommendations