Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 217–229 | Cite as

Finite thermostats in classical and quantum nonequilibrium

  • Giovanni Gallavotti
Regular Article
  • 11 Downloads
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

Models for studying systems in stationary states but out of equilibrium have often empirical nature and very often break the fundamental time reversal symmetry. Here, a formal interpretation will be discussed of the widespread idea that, in any event, the particular friction model choice should not matter physically. The proposal is, quite generally, that for the same physical system a time reversible model should be possible. Examples about the Navier–Stokes equations are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963) ADSCrossRefGoogle Scholar
  2. 2.
    R. Becker, Electromagnetic Fields and Interactions (Blaisdell, New-York, 1964) Google Scholar
  3. 3.
    D. Abraham, E. Baruch, G. Gallavotti, A. Martin-Löf, Stud. Appl. Math. 50, 121 (1971) CrossRefGoogle Scholar
  4. 4.
    D. Abraham, E. Baruch, G. Gallavotti, A. Martin-Löf, Stud. Appl. Math. 51, 211 (1972) CrossRefGoogle Scholar
  5. 5.
    H-D. Meyer, W. Miller, J. Chem. Phys. 70, 3214 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    F. Mauri, R. Car, E. Tosatti, Europhys. Lett. 24, 431 (1993) ADSCrossRefGoogle Scholar
  7. 7.
    J.L. Alonso, A. Castro, J. Clemente-Gallardo, J.C. Cuchi, P. Echenique, F. Falcetom, J. Phys. A 44, 395004 (2011) MathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Hänggi, G.L. Ingold, Chaos 15, 026105 (2005) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Gallavotti, D. Cohen, Phys. Rev. Lett. 74, 2694 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    G. Gallavotti, Phys. Rev. Lett. 77, 4334 (1996) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    G. Gallavotti, Phys. Lett. A 223, 91 (1996) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Gallavotti, Physica D 112, 250 (1998) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V. Franceschini, C. Tebaldi, Meccanica 20, 207 (1985) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Frazer, Arch. Hist. Exact Sci. 28, 197 (1983) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Ruelle, Turbulence, Strange Attractors and Chaos (World Scientific, New-York, 1995) Google Scholar
  17. 17.
    Ya.G. Sinai, Topics in ergodic theory, in Princeton Mathematical Series (Princeton University Press, Princeton, 1994), Vol. 44 Google Scholar
  18. 18.
    G. Gallavotti, D. Cohen, J. Stat. Phys. 80, 931 (1995) ADSCrossRefGoogle Scholar
  19. 19.
    O. Nakabeppu, T. Suzuki, J. Therm. Anal. Calorim. 69, 727 (2002) CrossRefGoogle Scholar
  20. 20.
    G. Gallavotti, Nonequilibrium and Irreversibility, Theoretical and Mathematical Physics (Springer-Verlag, Heidelberg 2014) Google Scholar
  21. 21.
    G. Gallavotti, E. Presutti, J. Math. Phys. 51, 015202 (2010) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2472 (1985) ADSCrossRefGoogle Scholar
  23. 23.
    F. Strocchi, Rev. Mod. Phys. 38, 36 (1966) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    G. Gallavotti, E. Presutti, J. Stat. Phys. 139, 618 (2010) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Gallavotti, E. Presutti, J. Math. Phys. 51, 0353303 (2010) ADSGoogle Scholar
  26. 26.
    D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Fluids (Academic Press, New-York, 1990) Google Scholar
  27. 27.
    V. Jaksić, C.A. Pillet, J. Stat. Phys. 108, 787 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    E. Langmann, J.L. Lebowitz, V. Mastropietro, P. Moosavi, Commun. Math. Phys. 349, 551 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    G. Gallavotti, Friction? reversibility? and chaotic hypothesis, in Proceedings IHP Workshop on “Stochastic Mechanics of Non Equilibrium”, 2017 Vol. 1, pp. 1–13 Google Scholar
  30. 30.
    G. Gallavotti, L. Rondoni, E. Segre, Physica D 187, 358 (2004) ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    G. Gallavotti, V. Lucarini, J. Stat. Phys. 156, 1027 (2014) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    L. Rondoni, C. Mejia-Monasterio, Nonlinearity 20, R1 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    Z.S. She, E. Jackson, Phys. Rev. Lett. 70, 1255 (1993) ADSCrossRefGoogle Scholar
  34. 34.
    G. Gallavotti, Foundations of Fluid Dynamics, 2nd edn. (Springer Verlag, Berlin, 2005) Google Scholar
  35. 35.
    F. Bonetto, G. Gallavotti, Commun. Math. Phys. 189, 263 (1997) ADSCrossRefGoogle Scholar
  36. 36.
    S. Kuksin, A. Shirikian, Mathematics of Two-Dimensional Turbulence (Cambridge University Press, Cambridge, 2012) Google Scholar
  37. 37.
    V. Franceschini, C. Tebaldi, J. Stat. Phys. 21, 707 (1979) ADSCrossRefGoogle Scholar
  38. 38.
    V. Franceschini, Truncated Navier–Stokes Equations on a Two-Dimensional Torus, in Coupled Nonlinear Oscillators, Mathematical Studies, edited by J. Chandra, A.C. Scott (North-Holland, Amsterdam, 1983), Vol. 80, pp. 21–29 Google Scholar
  39. 39.
    V. Franceschini, C. Tebaldi, F. Zironi, J. Stat. Phys. 35, 387 (1984) ADSCrossRefGoogle Scholar
  40. 40.
    V. Franceschini, C. Giberti, M. Nicolini, J. Stat. Phys. 50, 879 (1988) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFN-Roma1 and Rutgers UniversityRomaItaly

Personalised recommendations