Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 533–549 | Cite as

Multi-soliton states under triangular spatial modulation of the quadratic nonlinearity

  • Vitaly Lutsky
  • Boris A. Malomed
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

We introduce multi-soliton sets in the two-dimensional medium with the χ(2) nonlinearity subject to spatial modulation in the form of a triangle of singular peaks. Various families of symmetric and asymmetric sets are constructed, and their stability is investigated. Stable symmetric patterns may be built of 1, 4, or 7 individual solitons, while stable asymmetric ones contain 1, 2, or 3 solitons. Symmetric and asymmetric patterns may demonstrate mutual bistability. The shift of the asymmetric single-soliton state from the central position is accurately predicted analytically. Vortex rings composed of three solitons are produced too.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003) Google Scholar
  2. 2.
    T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge University Press, Cambridge, 2006) Google Scholar
  3. 3.
    W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966) Google Scholar
  4. 4.
    Y.V. Kartashov, B.A. Malomed, L. Torner, Rev. Mod. Phys. 83, 247 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    L.P. Pitaevskii, A. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003) Google Scholar
  6. 6.
    J. Hukriede, D. Runde, D. Kip, J. Phys. D 36, R1 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Phys. Rev. Lett. 105, 050405 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    L.W. Clark, L.-C. Ha, C.-Y. Xu, C. Chin, Phys. Rev. Lett. 115, 155301 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    S. Ghanbari, T.D. Kieu, A. Sidorov, P. Hannaford, J. Phys. B: At. Mol. Opt. Phys. 39, 847 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    D.M. Bauer, M. Lettner, C. Vo, G. Rempe, S. Dürr, Nat. Phys. 5, 339 (2009) CrossRefGoogle Scholar
  11. 11.
    O.V. Borovkova, V.E. Lobanov, B.A. Malomed, Phys. Rev. A 85, 023845 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    L. Bergé, Phys. Rep. 303, 259 (1998) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions, Optical Collapse (Springer, Cham, 2015) Google Scholar
  14. 14.
    G.I. Stegeman, D.J. Hagan, L. Torner, Opt. Quant. Electr. 28, 1691 (1996) CrossRefGoogle Scholar
  15. 15.
    C. Etrich, F. Lederer, B.A. Malomed, T. Peschel, U. Peschel, Progr. Opt. 41, 483 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Buryak, P. Di Trapani, D.V. Skryabin, S. Trillo, Phys. Rep. 370, 63 (2002) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Suchowski, G. Porat, A. Arie, Laser Photonics Rev. 8, 333 (2014) ADSCrossRefGoogle Scholar
  18. 18.
    M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quant. Electr. 28, 2631 (1992) ADSCrossRefGoogle Scholar
  19. 19.
    M. Yamada, N. Nada, M. Saitoh, K. Watanabe, Appl. Phys. Lett. 62, 435 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    V. Berger, Phys. Rev. Lett. 81, 4136 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    R. Lifshitz, A. Arie, A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    A. Arie, N. Habshoosh, A. Bahabad, Opt. Quant. Electr. 39, 361 (2007) CrossRefGoogle Scholar
  23. 23.
    A. Arie, N. Voloch, Laser Photonics Rev. 4, 355 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    A.A. Sukhorukov, Y.S. Kivshar, Phys. Rev. E 65, 036609 (2002) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Shapira, N. Voloch-Bloch, B.A. Malomed, A. Arie, J. Opt. Soc. Am. B 28, 1481 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    V.A. Brazhnyi, B.A. Malomed, Phys. Rev. A 86, 013829 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    V. Lutsky, B.A. Malomed, Phys. Rev. A 91, 023815 (2015) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    B.A. Malomed, (Eds.) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (Springer-Verlag, Berlin, Heidelberg, 2013) Google Scholar
  29. 29.
    S. Flach, V. Fleurov, J. Phys.: Condens. Matter 9, 7039 (1997) ADSGoogle Scholar
  30. 30.
    R.A. Pinto, S. Flach, Phys. Rev. A 73, 022717 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    T. Lahaye, T. Pfau, L. Santos, Phys. Rev. Lett. 104, 160404 (2010) CrossRefGoogle Scholar
  32. 32.
    L. Li, P.G. Kevrekidis, Phys. Rev. E 83, 066608 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J. D’Ambroise, P.G. Kevrekidis, S. Lepri, J. Phys. A Math. Theor. 45, 444012 (2012) CrossRefGoogle Scholar
  34. 34.
    G. Gligorić, A. Radovanović, J. Petrović, A. Maluckov, Lj. Hadzievski, B.A. Malomed, Chaos 27, 113102 (2017) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Franzos, V. Penna, Phys. Rev. E 67, 046227 (2003) ADSCrossRefGoogle Scholar
  36. 36.
    A. Sigler, B.A. Malomed, D.V. Skryabin, Phys. Rev. E 74, 066604 (2006) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    P. Jason, M. Johansson, Phys. Rev. E 91, 022910 (2015) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Z. Shen, L. Su, X.-C. Yuan, Y.-C. Shen, Appl. Phys. Lett. 109, 241901 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (SIAM, Philadelphia, 2010) Google Scholar
  40. 40.
    D.E. Pelinovsky, Localization in Periodic Potentials (Cambridge University Press, Cambridge, 2011) Google Scholar
  41. 41.
    V. Lutsky, B.A. Malomed, Opt. Exp. 25, 12967 (2017) ADSCrossRefGoogle Scholar
  42. 42.
    M. Vakhitov, A. Kolokolov, Radiophys. Quantum Electron. 16, 783 (1973) ADSCrossRefGoogle Scholar
  43. 43.
    W.J. Firth, D.V. Skryabin, Phys. Rev. Lett. 79, 2450 (1997) ADSCrossRefGoogle Scholar
  44. 44.
    L. Torner, D.V. Petrov, Electron. Lett. 33, 608 (1997) CrossRefGoogle Scholar
  45. 45.
    D.V. Petrov, L. Torner, J. Martorell, R. Vilaseca, J.P. Torres, C. Cojocaru, Opt. Lett. 23, 1444 (1998) ADSCrossRefGoogle Scholar
  46. 46.
    D.V. Skryabin, W.J. Firth, Phys. Rev. E 58, R1252 (1998) ADSCrossRefGoogle Scholar
  47. 47.
    B.A. Malomed, Phys. Rev. E 58, 7928 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    N.N. Rosanov, Progr. Opt. 35, 1 (1996) ADSCrossRefGoogle Scholar
  49. 49.
    F.T. Arecchi, S. Boccaletti, P. Ramazza, Phys. Rep. 318, 1 (1999) ADSCrossRefGoogle Scholar
  50. 50.
    B. Gutlich, H. Zimmermann, C. Denz, R. Neubecker, M. Kreuzer, T. Tschudi, Appl. Phys. B: Laser Opt. 81, 927 (2005) ADSCrossRefGoogle Scholar
  51. 51.
    T. Ackemann, W.J. Firth, G.-L. Oppo, Adv. At. Mol. Opt. Phys. 57, 323 (2009) ADSCrossRefGoogle Scholar
  52. 52.
    A.S. Reyna, C.B. de Araujo, Adv. Opt. Phot. 9, 720 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical ElectronicsSchool of Electrical Engineering, Tel Aviv UniversityTel AvivIsrael
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations