Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 379–420 | Cite as

Stabilization by dissipation and stochastic resonant activation in quantum metastable systems

Noise induced phenomena in quantum metastable systems
  • Bernardo Spagnolo
  • Angelo Carollo
  • Davide Valenti
Review
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

In this tutorial paper we present a comprehensive review of the escape dynamics from quantum metastable states in dissipative systems and related noise-induced effects. We analyze the role of dissipation and driving in the escape process from quantum metastable states with and without an external driving force, starting from a nonequilibrium initial condition. We use the Caldeira–Leggett model and a non-perturbative theoretical technique within the Feynman–Vernon influence functional approach in strong dissipation regime. In the absence of driving, we find that the escape time from the metastable region has a nonmonotonic behavior versus the system-bath coupling and the temperature, producing a stabilizing effect in the quantum metastable system. In the presence of an external driving, the escape time from the metastable region has a nonmonotonic behavior as a function of the frequency of the driving, the thermal-bath coupling and the temperature. The quantum noise enhanced stability phenomenon is observed in both systems investigated. Finally, we analyze the resonantly activated escape from a quantum metastable state in the spin-boson model. We find quantum stochastic resonant activation, that is the presence of a minimum in the escape time as a function of the driving frequency. Background and introductory material has been added in the first three sections of the paper to make this tutorial review reasonably self-contained and readable for graduate students and non-specialists from related areas.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Benzi, G. Parisi, A. Sutera, A. Vulpiani, Tellus 34, 10 (1982) ADSCrossRefGoogle Scholar
  2. 2.
    K. Wiesenfeld, F. Moss, Nature 373, 33 (1995) ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Collins, C.C. Chow, T.T. Imhoff, Nature 376, 236 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    S.M. Bezrukov, I. Vodyanoy, Nature 385, 319 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    R.N. Mantegna, B. Spagnolo, L. Testa, M. Trapanese, J. Appl. Phys. 97, 10E519 (2005) CrossRefGoogle Scholar
  7. 7.
    N.V. Agudov, A.V. Krichigin, D. Valenti, B. Spagnolo, Phys. Rev. E 81, 051123 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    N.G. Stocks, Phys. Rev. Lett. 84, 2310 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    B. Spagnolo, A. La Barbera, Physica A 315, 114 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    A. La Barbera, B. Spagnolo, Physica A 314, 120 (2002) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    N.V. Agudov, A.N. Malakhov, Phys. Rev. E 60, 6333 (1999) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R.N. Mantegna, B. Spagnolo, Int. J. Bifurc. Chaos 8, 783 (1998) CrossRefGoogle Scholar
  14. 14.
    N.V. Agudov, B. Spagnolo, Phys. Rev. E 64, 035102 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    A. Mielke, Phys. Rev. Lett. 84, 818 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E 69, 061103 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    L. Serdukova, Y. Zheng, J. Duan, J. Kurths, Chaos 26, 073117 (2016) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992) ADSCrossRefGoogle Scholar
  19. 19.
    M. Bier, R.D. Astumian, Phys. Rev. Lett. 71, 1649 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    P. Pechukas, P. Hänggi, Phys. Rev. Lett. 73, 2772 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    M. Marchi, F. Marchesoni, L. Gammaitoni, E. Menichella-Saetta, S. Santucci, Phys. Rev. E 54, 3479 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    C. Pan, X. Tan, Y. Yu, G. Sun, L. Kang, W. Xu, J. Chen, P. Wu, Phys. Rev. E 79, 030104(R) (2009) ADSCrossRefGoogle Scholar
  24. 24.
    V.N. Chizhevsky, Phys. Rev. E 80, 061139 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    A. Fiasconaro, B. Spagnolo, Phys. Rev. E 83, 041122 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    P. Addesso, G. Filatrella, V. Pierro, Phys. Rev. E 85, 016708 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    C. Spalding, C.R. Doering, G.R. Flierl, Phys. Rev. E 96, 042411 (2017) ADSCrossRefGoogle Scholar
  28. 28.
    S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 47, 3915 (1993) ADSCrossRefGoogle Scholar
  29. 29.
    G. Grinstein, M.A. Munöz, Y. Tu, Phys. Rev. Lett. 76, 4376 (1996) ADSCrossRefGoogle Scholar
  30. 30.
    O.A. Chichigina, D. Valenti, B. Spagnolo, Fluct. Noise Lett. 5, L243 (2005) CrossRefGoogle Scholar
  31. 31.
    A. Manor, N.M. Shnerb, Phys. Rev. Lett. 103, 030601 (2009) ADSCrossRefGoogle Scholar
  32. 32.
    Z.G. Arenas, D. Barci, J. Stat. Mech-Theory E P12005 (2012) Google Scholar
  33. 33.
    A. Bovier, F. den Hollander, Metastability. A Potential-Theoretic Approach (Springer, 2015) Google Scholar
  34. 34.
    J.-P. Bouchaud, M. Mezard, J. Dalibard, (Eds.) Les Houches - Session LXXXV: Complex Systems (Elsevier, 2007) Google Scholar
  35. 35.
    R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, J.T. Stockburger, Phys. Rev. Lett. 107, 130404 (2011) ADSCrossRefGoogle Scholar
  36. 36.
    K. Kapcia, J. Supercond. Nov. Magn. 27, 913 (2014) CrossRefGoogle Scholar
  37. 37.
    M. Abdi, P. Degenfeld-Schonburg, M. Sameti, C. Navarrete-Benlloch, M.J. Hartmann, Phys. Rev. Lett. 116, 233604 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015) ADSCrossRefGoogle Scholar
  39. 39.
    F. Letscher, O. Thomas, T. Niederprüm, M. Fileischhauer, H. Ott, Phys. Rev. X 7, 021020 (2017) Google Scholar
  40. 40.
    J. Galego, F.J. Garcia-Vidal, J. Feist, Phys. Rev. Lett. 119, 136001 (2017) ADSCrossRefGoogle Scholar
  41. 41.
    K. Macieszczak, M. Guţă, I. Lesanovsky, J.P. Garrahan, Phys. Rev. Lett. 116, 240404 (2016) ADSCrossRefGoogle Scholar
  42. 42.
    A. Le Boité, M.-J. Hwang, M. B. Plenio, Phys. Rev. A 95, 023829 (2017) ADSCrossRefGoogle Scholar
  43. 43.
    M. Carrega, P. Solinas, M. Sassetti, U. Weiss, Phys. Rev. Lett. 116, 240403 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    M. Bukov, L. D’Alessio, A. Polkovnikov, Adv. Phys. 64, 139 (2015) ADSCrossRefGoogle Scholar
  45. 45.
    M.E. Kimchi-Schwartz, L. Martin, E. Flurin, C. Aron, M. Kulkarni, H.E. Tureci, I. Siddiqi, Phys. Rev. Lett. 116, 240503 (2016) ADSCrossRefGoogle Scholar
  46. 46.
    S. Khlebnikov, Phys. Rev. B 95, 174507 (2017) ADSCrossRefGoogle Scholar
  47. 47.
    L. Magazzù, P. Hänggi, B. Spagnolo, D. Valenti, Phys. Rev. E 95, 042104 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    L. Rózsa, K. Palotás, A. Deák, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, U. Nowak, Phys. Rev. B 95, 094423 (2017) ADSCrossRefGoogle Scholar
  49. 49.
    W. Jin et al., Phys. Rev. X 7, 041020 (2017) Google Scholar
  50. 50.
    D. Valenti, A. Carollo, B. Spagnolo, Phys. Rev. A 97, 042109 (2018) ADSCrossRefGoogle Scholar
  51. 51.
    D. Dan, M.C. Mahato, A.M. Jayannavar, Phys. Rev. E 60, 6421 (1999) ADSCrossRefGoogle Scholar
  52. 52.
    N.V. Agudov, A.A. Dubkov, B. Spagnolo, Physica A 325, 144 (2003) ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    R. Wackerbauer, Phys. Rev. E 59, 2872 (1999) ADSCrossRefGoogle Scholar
  54. 54.
    A.L. Pankratov, B. Spagnolo, Phys. Rev. Lett. 93, 177001 (2004) ADSCrossRefGoogle Scholar
  55. 55.
    P. D’Odorico, F. Laio, L. Ridolfi, Proc. Natl. Acad. Sci. USA 102, 10819 (2005) CrossRefADSGoogle Scholar
  56. 56.
    P.I. Hurtado, J. Marro, P. Garrido, Phys. Rev. E 74, 050101 (2006) ADSCrossRefGoogle Scholar
  57. 57.
    R. Mankin, E. Soika, A. Sauga, A. Ainsaar, Phys. Rev. E 77, 051113 (2008) ADSCrossRefGoogle Scholar
  58. 58.
    M. Yoshimoto, H. Shirahama, S. Kurosawa, J. Chem. Phys. 129, 014508 (2008) ADSCrossRefGoogle Scholar
  59. 59.
    M. Trapanese, J. Appl. Phys. 105, 07D313 (2009) CrossRefGoogle Scholar
  60. 60.
    J.H. Li, J. Łuczka, Phys. Rev. E 82, 041104 (2010) ADSCrossRefGoogle Scholar
  61. 61.
    G. Augello, D. Valenti, B. Spagnolo, Eur. Phys. J. B 78, 225 (2010) ADSCrossRefGoogle Scholar
  62. 62.
    A.A. Smirnov, A.L. Pankratov, Phys. Rev. B 82 132405 (2010) ADSCrossRefGoogle Scholar
  63. 63.
    Z.-L. Jia, D.-C. Mei, J. Stat. Mech-Theory E P10010, (2011) Google Scholar
  64. 64.
    M. Parker, A. Kamenev, B. Meerson, Phys. Rev. Lett. 107, 180603 (2011) ADSCrossRefGoogle Scholar
  65. 65.
    A. Shit, S. Chattopadhyay, J.R. Chaudhuri, J. Phys. Chem. A 117, 8576 (2013) CrossRefGoogle Scholar
  66. 66.
    D. Valenti, C. Guarcello, B. Spagnolo, Phys. Rev. B 89, 214510 (2014) ADSCrossRefGoogle Scholar
  67. 67.
    T. Yang, C. Zhang, Q. Han, C.-H. Zeng, H. Wang, D. Tian, F. Long, Eur. Phys. J. B 87, 136 (2014) ADSCrossRefGoogle Scholar
  68. 68.
    J. Schuecker, M. Diesmann, M. Helias, Phys. Rev. E 92, 052119 (2015) ADSCrossRefGoogle Scholar
  69. 69.
    H.A. Kramers, Physica 7, 284 (1940) ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990) ADSCrossRefGoogle Scholar
  71. 71.
    A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981) ADSCrossRefGoogle Scholar
  72. 72.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983) ADSCrossRefGoogle Scholar
  73. 73.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987) ADSCrossRefGoogle Scholar
  74. 74.
    M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998) ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    U. Weiss, Quantum Dissipative Systems, 4th edn. (World Scientific: Singapore, Singapore, 2012) Google Scholar
  76. 76.
    A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983) ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002) Google Scholar
  78. 78.
    N. Pottier, Nonequilibrium Statistical Physics (Oxford University Press, Oxford, 2010) Google Scholar
  79. 79.
    L. Magazzù, Dissipative dynamics of multi-state bistable quantum systems, PhD thesis, Palermo University, Palermo, 2015 Google Scholar
  80. 80.
    P. Hänggi, G.L. Ingold, Chaos 15, 026105 (2005) ADSMathSciNetCrossRefGoogle Scholar
  81. 81.
    P. Reimann, P. Hänggi, in Stochastic Dynamics (Springer, Berlin, 1997), pp. 127–139 Google Scholar
  82. 82.
    A. Atland, B.D. Simons, Condensed matter field theory (Cambridge University Press, Cambridge, 2010) Google Scholar
  83. 83.
    H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed. (World Scientific, Singapore, 2004) Google Scholar
  84. 84.
    L.S. Schulman, Techniques and Applications of Path Integration (Wiley & Sons, New York, 1981) Google Scholar
  85. 85.
    R.P. Feynman, F.L. Vernon, Jr., Ann. Phys. 24, 118 (1963) ADSCrossRefGoogle Scholar
  86. 86.
    T. Brandes, Lecture Notes: Statistische mechanik 1 - computergestützte methoden https://doi.org/www.itp.tu-berlin.de/menue/lehre/lv/ss_2007/wahlpflichtveranstaltungen/stat-i-ss070/ (2007)
  87. 87.
    C. Vierheilig, Interplay between dissipation and driving in nonlinear quantum systems, Ph.D. thesis, Regensburg University, Regensburg, 2010 https://doi.org/epub.uni-regensburg.de/20157/1/vierheilig.pdf
  88. 88.
    L. Magazzù, A. Carollo, B. Spagnolo, D. Valenti, J. Stat. Mech. Theory Exp. 2016, 054016 (2016) CrossRefGoogle Scholar
  89. 89.
    H. Wang, M. Thoss, New J. Phys. 10, 115005 (2008) ADSCrossRefGoogle Scholar
  90. 90.
    H. Grabert, P. Schramm, G.L. Ingold, Phys. Rep. 168, 115 (1988) ADSMathSciNetCrossRefGoogle Scholar
  91. 91.
    M. Thorwart, M. Grifoni, P. Hänggi, Ann. Phys. 293, 15 (2001) ADSCrossRefGoogle Scholar
  92. 92.
    D.O. Harris, G.G. Engerholm, W.D. Gwinn, J. Chem. Phys. 43, 1515 (1965) ADSCrossRefGoogle Scholar
  93. 93.
    J.C. Light, T. Carrington, Adv. Chem. Phys. 114, 263 (2007) Google Scholar
  94. 94.
    M. Grifoni, M. Sassetti, U. Weiss, Phys. Rev. E 53 R2033 (1996) ADSCrossRefGoogle Scholar
  95. 95.
    M. Thorwart, M. Grifoni, P. Hänggi, Phys. Rev. Lett. 85, 860 (2000) ADSCrossRefGoogle Scholar
  96. 96.
    L. Magazzù, D. Valenti, B. Spagnolo, M. Grifoni, Phys. Rev. E 92, 032123 (2015) ADSCrossRefGoogle Scholar
  97. 97.
    E.Y. Wilner, H. Wang, M. Thoss, E. Rabani, Phys. Rev. B 92, 195143 (2015) ADSCrossRefGoogle Scholar
  98. 98.
    F. Chiarello, E. Paladino, M.G. Castellano, C. Cosmelli, A. D’Arrigo, G. Torrioli, G. Falci, New J. Phys. 14, 023031 (2012) ADSCrossRefGoogle Scholar
  99. 99.
    I. Affleck, Phys. Rev. Lett. 46, 388 (1981) ADSMathSciNetCrossRefGoogle Scholar
  100. 100.
    D. Waxman, A.J. Leggett, Phys. Rev. B 32, 4450 (1985) ADSCrossRefGoogle Scholar
  101. 101.
    H. Grabert, P. Olschowski, U. Weiss, Phys. Rev. B 36, 1931 (1987) ADSCrossRefGoogle Scholar
  102. 102.
    V.V. Sargsyan, Y.V. Palchikov, Z. Kanokov, G.G. Adamian, N.V. Antonenko, Phys. Rev. A 75, 062115 (2007) ADSCrossRefGoogle Scholar
  103. 103.
    C.-L. Ho, C.-C. Lee, Phys. Rev. A 71, 012102 (2005) ADSCrossRefGoogle Scholar
  104. 104.
    A. Shit, S. Chattopadhyay, J.R. Chaudhuri, Chem. Phys. 431, 26 (2014) CrossRefGoogle Scholar
  105. 105.
    L.F. Cugliandolo, C.R. Phys. 14, 685 (2013) ADSCrossRefGoogle Scholar
  106. 106.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015) CrossRefGoogle Scholar
  107. 107.
    M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Nature 419, 51 (2002) ADSCrossRefGoogle Scholar
  108. 108.
    P. Calabrese, J. Cardy, Phys. Rev. Lett. 96, 136801 (2006) ADSCrossRefGoogle Scholar
  109. 109.
    C. Kollath, A. Läuchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007) ADSCrossRefGoogle Scholar
  110. 110.
    A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863 (2011) ADSCrossRefGoogle Scholar
  111. 111.
    V. Yukalov, Laser Phys. Lett. 8, 485 (2011) Google Scholar
  112. 112.
    S. Trotzky, Y-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Nature Phys. 8, 325 (2012) ADSCrossRefGoogle Scholar
  113. 113.
    P. Facchi, S. Pascazio, Phys. Lett. A 241, 139 (1998) ADSCrossRefGoogle Scholar
  114. 114.
    A.G. Kofman, G. Kurizki, Nature 405, 546 (2000) ADSCrossRefGoogle Scholar
  115. 115.
    P. Facchi, H. Nakazato, S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001) ADSCrossRefGoogle Scholar
  116. 116.
    P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, D.A. Lidar, Phys. Rev. A 71, 022302 (2005) ADSCrossRefGoogle Scholar
  117. 117.
    P.M. Harrington, J.T. Monroe, K.W. Murch, Phys. Rev. Lett. 118, 240401 (2017) ADSCrossRefGoogle Scholar
  118. 118.
    J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996) ADSCrossRefGoogle Scholar
  119. 119.
    S. Miyamoto, K. Nishiguchi, Y. Ono, K.M. Itoh, A. Fujiwara, Phys. Rev. B 82, 033303 (2010) ADSCrossRefGoogle Scholar
  120. 120.
    Y. Hasegawa, M. Arita, Phys. Lett. A 375, 3450 (2011) ADSCrossRefGoogle Scholar
  121. 121.
    M.H. Devoret, J.M. Martinis, D. Esteve, J. Clarke, Phys. Rev. Lett. 53, 1260 (1984) ADSCrossRefGoogle Scholar
  122. 122.
    M.H. Devoret, J.M. Martinis, J. Clarke, Phys. Rev. Lett. 55, 1908 (1985) ADSCrossRefGoogle Scholar
  123. 123.
    J.M. Martinis, M.H. Devoret, J. Clarke, Phys. Rev. B 35, 4682 (1987) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Chimica, Group of Interdisciplinary Theoretical Physics, Università di Palermo and CNISM, Unità di PalermoPalermoItaly
  2. 2.Radiophysics Department, Lobachevsky State University of Nizhny NovgorodNizhni NovgorodRussia
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di CataniaCataniaItaly
  4. 4.IBIM-CNR Istituto di Biomedicina ed Immunologia Molecolare “Alberto Monroy”PalermoItaly

Personalised recommendations