Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 3–16 | Cite as

Dynamic compaction of polyurethane foam: experiments and modelling

  • P. Pradel
  • F. Malaise
  • T. de Rességuier
  • C. Delhomme
  • G. Le Blanc
  • J. H. Quessada
Regular Article
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates

Abstract

The framework of this paper is to investigate the mitigation ability of an expanded rigid polyurethane foam against extremely fast (>106 s−1) and intense ( >10 GPa) dynamic loadings. Cyclic quasi-static tests and dynamic experiments (gas gun and low inductance generator) have been performed to investigate the foam behaviour for strain rates ranging from 10−3 to 105 s−1. Analysis of the experimental results shows that the foam has an elastic behaviour phase followed by a compaction phase with significant permanent sets. Compaction threshold is about 8 MPa under quasi-static loading, and 21 MPa for strain rates above 104 s−1. A porous compaction model is used to represent the macroscopic behaviour of the foam for the whole range of strain rates. The parameters are identified from dynamic experimental results. The model is validated by comparing calculated velocity profiles with an explicit hydrocode and velocity profiles measured during the experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.A.O. Fernandes, R.T. Jardin, A.B. Pereira, R.J. Alves de Sousa, Mater. Des. 82, 335 (2015) CrossRefGoogle Scholar
  2. 2.
    A. Pellegrino, V.L. Tagarielli, R. Gerlach, N. Petrinic, Int. J. Impact Eng. 75, 214 (2015) CrossRefGoogle Scholar
  3. 3.
    S.H. Goods, C.L. Neschwanger, C. Henderson, D.M. Skala, Mechanical properties and energy absorption characteristics of a polyurethane foam, Technical report, Sandia National Laboratories, 1997 Google Scholar
  4. 4.
    J.C. Gowda, A flexible syntactic foam for shock mitigation, Ph.D. thesis, North Carolina A&T State University, 2011 Google Scholar
  5. 5.
    H. Jmal, Identification du comportement quasi-statique et dynamique de la mousse de polyuréthane au travers de modèles à mémoire, Ph.D. thesis, Université de Haute Alsace, 2012 Google Scholar
  6. 6.
    Z.H. Tu, V.P.W. Shim, C.T. Lim, Int. J. Solids Struct. 38, 9267 (2001) CrossRefGoogle Scholar
  7. 7.
    W. Chen, F. Lu, N. Winfree, Exp. Mech. 42, 65 (2002) CrossRefGoogle Scholar
  8. 8.
    E. Zaretsky, Z. Asaf, E. Ran, F. Aizik, Int. J. Impact Eng. 39, 1 (2012) CrossRefGoogle Scholar
  9. 9.
    D.M. Dattelbaum, J.D. Coe, C.B. Kiyanda, R.L. Gustavsen, B.M. Patterson, J. Appl. Phys. 115, 174908 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    P.L. Hereil, F. Lassalle, G. Avrillaud, AIP Conf. Proc. 706, 1209 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties – second edition (Cambridge University Press, 1997) Google Scholar
  12. 12.
    F. Saint-Michel, L. Chazeau, J.Y. Cavaillé, E. Chabert, Compos. Sci. Technol. 66, 2700 (2006) CrossRefGoogle Scholar
  13. 13.
    P. Pradel, F. Malaise, T. de Rességuier, C. Delhomme, B. Cadilhon, J.H. Quessada, G. Le Blanc, Stress wave propagation and mitigation in two polymeric foams, in Proceedings of the 2017 APS-SCCM conference (2017) Google Scholar
  14. 14.
    L. Seaman, R.E. Tokheim, D.R. Curran, Computational representation of constitutive relations for porous materials, Technical report, Stanford Research Institute, 1974 Google Scholar
  15. 15.
    J.K. Mckenzie, Proc. Phys. Soc. 63, 2 (1950) ADSCrossRefGoogle Scholar
  16. 16.
    P. Pradel, Étude de la compaction dynamique de mousses polymères : Expériences et modélisation, Ph.D. thesis, École Nationale Supérieure de Mécanique et d’Aérotechnique, 2017, https://doi.org/tel.archives-ouvertes.fr/tel-01737770v1
  17. 17.
    S.P. Marsh, LASL shock Hugoniot data (University of California Press, 1980) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Pradel
    • 1
  • F. Malaise
    • 1
  • T. de Rességuier
    • 2
  • C. Delhomme
    • 3
  • G. Le Blanc
    • 4
  • J. H. Quessada
    • 1
  1. 1.CEA CESTALe Barp CedexFrance
  2. 2.Institut Pprime UPR 3346 CNRS-Université de Poitiers-ENSMAFuturoscope Chasseneuil CedexFrance
  3. 3.CEA LR, BP 16MontsFrance
  4. 4.CEA GRAMATGramatFrance

Personalised recommendations