The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 45–54 | Cite as

Shockless spalling characterization of ceramics in a 1D-stress state

  • Benjamin Erzar
Regular Article
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates


Ceramics are particularly interesting as protective materials due to their high compressive strength. However the maximum tensile stress withstood by these materials is usually lower by one order of magnitude. To study the dynamic strength in tension, spalling tests are commonly performed. In this work, a new spalling configuration is presented to characterize brittle materials such as ceramics at ultra-high strain-rates of about 103–104 s−1 in a one-dimensional stress state. To do so, a specific test is designed in which the ceramic specimen is a bar with a 3 mm radius. This geometry is chosen to ensure a one-dimensional stress state in the cylindrical specimen avoiding wave dispersion during the propagation of the loading pulse. Finally, the first experimental validation tests conducted at the CEA-Gramat with the pulsed power generator called GEPI are reported.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Longy, Ph.D. thesis, Centre d’Etudes de Gramat, 1988 Google Scholar
  2. 2.
    L.H.L. Louro et al., J. Phys. IV France 49, C3-333 (1988) Google Scholar
  3. 3.
    A. Cosculluela, Ph.D. thesis, Centre d’Etudes de Gramat, 1992 Google Scholar
  4. 4.
    N.H. Murray et al., J. Appl. Phys. 84, 734 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    F. Gálvez, J. Rodriguez, V. Sánchez, J. Phys. IV France 7, 151 (1997) CrossRefGoogle Scholar
  6. 6.
    S. Walley, Adv. Appl. Ceram. 109, 446 (2010) CrossRefGoogle Scholar
  7. 7.
    B. Erzar, E. Buzaud, Eur. Phys. J. Special Topics 206, 71 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Zinszner et al., J. Mech. Phys. Solids 85, 112 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    G. Avrillaud et al., in Proceedings of the 14th IEEE International Pulsed Power Conference (2003), p. 913 Google Scholar
  10. 10.
    P.L. Hereil, F. Lassalle, G. Avrillaud, Shock Compress. Condens. Matter Conf. 706, 1209 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    J.L. Zinszner et al., Philos. Trans. R. Soc. A 375, 20160167 (2016) ADSCrossRefGoogle Scholar
  12. 12.
    B. Erzar, E. Buzaud, P.Y. Chanal, J. Appl. Phys. 114, 244901 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    L. Pochhammer, J. Reine Angew. Math. 81, 324 (1876) MathSciNetGoogle Scholar
  14. 14.
    C. Chree, Trans. Cambr. Philos. Soc. 14, 250 (1889) ADSGoogle Scholar
  15. 15.
    M. Redwood, Mechanical waveguides (Pergamon Press, New York, 1960) Google Scholar
  16. 16.
    S.A. Novikov et al., Fiz. Metall. Metallovedeniye 4 (1966) Google Scholar
  17. 17.
    B. Erzar, P. Forquin, Exp. Mech. 50, 941 (2010) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEA, DAM, CEA-GramatGramatFrance

Personalised recommendations