Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 335–344 | Cite as

Generalized entropies in quantum and classical statistical theories

  • M. Portesi
  • F. Holik
  • P. W. LambertiEmail author
  • G. M. Bosyk
  • G. Bellomo
  • S. Zozor
Regular Article
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

We study a version of the generalized (h, ϕ)-entropies, introduced by Salicrú et al. [M. Salicrú et al., Commun. Stat. Theory Method. 22, 2015 (1993)], for a wide family of probabilistic models that includes quantum and classical statistical theories as particular cases. We extend previous works by exploring how to define (h, ϕ)-entropies in infinite dimensional models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010) Google Scholar
  2. 2.
    J. von Neumann, Nachr. Ges. Wiss. Gottingen Math.-Phys. Kl. 1927, 273 (1927) Google Scholar
  3. 3.
    F. Holik, A. Plastino, M. Sáenz, Quantum Inf. Comput. 16, 0115 (2016) MathSciNetGoogle Scholar
  4. 4.
    N. Watanabe, Phil. Trans. R. Soc. A 374, 20150240 (2016) ADSCrossRefGoogle Scholar
  5. 5.
    A. Rényi, in Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. (University of California Press, Berkeley and Los Angeles, 1961), Vol. 1, p. 547 Google Scholar
  6. 6.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    N. Canosa, R. Rossignoli, Phys. Rev. Lett. 88, 170401 (2002) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    X. Hu, Z. Ye, J. Math. Phys. 47, 023502 (2006) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Kaniadakis, Phys. Rev. E 66, 056125 (2002) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Bellomo, G.M. Bosyk, F. Holik, S. Zozor, Sci. Rep. 7, 14765 (2017) ADSCrossRefGoogle Scholar
  11. 11.
    J.B.M. Uffink, Measures of Uncertainty and the Uncertainty Principle., Ph.D. thesis, University of Utrecht, The Netherlands, 1990. See also references therein Google Scholar
  12. 12.
    S. Zozor, G.M. Bosyk, M. Portesi, J. Phys. A 46, 465301 (2013) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Zozor, G.M. Bosyk, M. Portesi, J. Phys. A 47, 495302 (2014) MathSciNetCrossRefGoogle Scholar
  14. 14.
    E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, UK, 2003) Google Scholar
  15. 15.
    C.A. Hein, Found. Phys. 9, 751 (1979) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Holik, A. Plastino, J. Math. Phys. 53, 073301 (2012) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Holik, C. Massri, A. Plastino, Int. J. Geom. Method. Mod. Phys. 13, 1650025 (2016) CrossRefGoogle Scholar
  18. 18.
    R. Horodecki, P. Horodecki, Phys. Lett. A 194, 147 (1994) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Abe, A.K. Rajagopal, Physica A 289, 157 (2001) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Tsallis, S. Lloyd, M. Baranger, Phys. Rev. A 63, 042104 (2001) ADSCrossRefGoogle Scholar
  21. 21.
    R. Rossignoli, N. Canosa, Phys. Rev. A 67, 042302 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    I. Bengtsson, K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006) Google Scholar
  23. 23.
    Y. Huang, IEEE Trans. Inf. Theory 59, 6774 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    K. Ourabah, A. Hamici-Bendimerad, M. Tribeche, Phys. Scripta 90, 045101 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    R.W. Yeung, IEEE Trans. Inf. Theory 43, 1924 (1997) CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, R.W. Yeung, IEEE Trans. Inf. Theory 44, 1440 (1998) CrossRefGoogle Scholar
  27. 27.
    J. Cardy, J. Phys. A 28, 285402 (2013) CrossRefGoogle Scholar
  28. 28.
    D. Gross, M. Walter, J. Math. Phys. 54, 082201 (2013) ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. Ahlswede, P. Löber, IEEE Trans. Inf. Theory 47, 474 (2001) CrossRefGoogle Scholar
  30. 30.
    M. Salicrú, M.L. Menéndez, D. Morales, L. Pardo, Commun. Stat. Theory Method.22, 2015 (1993) CrossRefGoogle Scholar
  31. 31.
    C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948) CrossRefGoogle Scholar
  32. 32.
    N. Watanabe, Phil. Trans. R. Soc. A 374, 20150240 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    G.M. Bosyk, S. Zozor, F. Holik, M. Portesi and P.W. Lamberti, Quantum Inform. Process. 15, 3393 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    F. Holik, G.M. Bosyk, G. Bellomo, Entropy 17, 7349 (2015) ADSCrossRefGoogle Scholar
  35. 35.
    M. Ohya, Rep. Math. Phys. 27, 19 (1989) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A.J. Short, S. Wehner, New J. Phys. 12, 033023 (2010) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics 1 (Springer-Verlag, New York, 1987) Google Scholar
  38. 38.
    O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics 2 (Springer-Verlag, Berlin, 1997) Google Scholar
  39. 39.
    E. Alfsen, Compact Convex Sets and Boundary Integrals (Springer-Verlag, Berlin, Heidelberg, New York, 1971) Google Scholar
  40. 40.
    R. Phelps, Lectures on Choquet’s Theorem (Springer-Verlag, Berlin, Heidelberg, 2001) Google Scholar
  41. 41.
    W. Arveson, R. Kadison, https://doi.org/arXiv:math/0508482 (2005)
  42. 42.
    Y. Li, P.Busch, J. Math. Anal. Appl. 408, 384 (2013) MathSciNetCrossRefGoogle Scholar
  43. 43.
    C.P. Niculescu, L.E. Persson, in Convex Functions and their Applications. A Contemporary Approach, Vol. 23 of CMS Books in Mathematics (Springer-Verlag, 2006) Google Scholar
  44. 44.
    H. Halvorson, M. Müger, Algebraic quantum field theory, in Philosophy of Physics, edited by J. Butterfield, J. Earman (Elsevier, 2006), pp. 731–922 Google Scholar
  45. 45.
    F. Holik, C. Massri, A. Plastino, L. Zuberman, Int. J. Theor. Phys. 52, 1836 (2013) CrossRefGoogle Scholar
  46. 46.
    A. Khrennikov, Ubiquitous Quantum Structure-From Psychology to Finance (Springer, 2010) Google Scholar
  47. 47.
    M. Rédei, S.J. Summers, Stud. Hist. Philos. Sci. B 38, 390 (2007) Google Scholar
  48. 48.
    J. Yngvason, Rep. Math. Phys. 55, 135 (2005) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    B. Mielnik, Commun. Math. Phys. 9, 55 (1968) ADSCrossRefGoogle Scholar
  50. 50.
    B. Mielnik, Commun. Math. Phys. 15, 1 (1969) ADSCrossRefGoogle Scholar
  51. 51.
    B. Mielnik, Commun. Math. Phys. 3, 221 (1974) ADSCrossRefGoogle Scholar
  52. 52.
    F. Holik, C. Massri, N. Ciancaglini, Int. J. Theor. Phys. 51, 1600 (2012) CrossRefGoogle Scholar
  53. 53.
    F. Holik, C. Massri, A. Plastino, L. Zuberman, Int. J. Theor. Phys. 52, 1836 (2013) CrossRefGoogle Scholar
  54. 54.
    G. Ludwig, Foundations of Quantum Mechanics I (Springer, Berlin, Heidelberg, Germany, 1983) Google Scholar
  55. 55.
    G. Ludwig, Foundations of Quantum Mechanics II (Springer, Berlin, Heidelberg, Germany, 1985) Google Scholar
  56. 56.
    Z. Daróczy, Inf. Control 16, 36 (1970) CrossRefGoogle Scholar
  57. 57.
    J. Havrda, F. Charvát, Kybernetika 3, 30 (1967) MathSciNetGoogle Scholar
  58. 58.
    P.N. Rathie, Inf. Sci. 54, 23 (1991) CrossRefGoogle Scholar
  59. 59.
    A.M. Gleason, J. Math. Mech. 6, 885 (1957) MathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Portesi
    • 1
  • F. Holik
    • 1
  • P. W. Lamberti
    • 2
    Email author
  • G. M. Bosyk
    • 1
  • G. Bellomo
    • 3
  • S. Zozor
    • 4
  1. 1.Instituto de Física La Plata (IFLP), UNLP, CONICET, Facultad de Ciencias ExactasLa PlataArgentina
  2. 2.Facultad de Matemática, Astronomía, Física y Computación (FAMAF), UNC, CONICETCórdobaArgentina
  3. 3.Instituto de Investigación en Ciencias de la Computación (ICC), CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  4. 4.Laboratoire Grenoblois d’Image, Parole, Signal et Automatique (GIPSA-Lab), CNRSSaint Martin d’HéresFrance

Personalised recommendations