Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 463–480 | Cite as

Transitions in large eddy simulation of box turbulence

  • Lennaert van Veen
  • Genta Kawahara
  • Tatsuya Yasuda
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

One promising decomposition of turbulent dynamics is that into building blocks such as equilibrium and periodic solutions and orbits connecting these. While the numerical approximation of such building blocks is feasible for flows in small domains and at low Reynolds numbers, computations in developed turbulence are currently out of reach because of the large number of degrees of freedom necessary to represent Navier-Stokes flow on all relevant spatial scales. We mitigate this problem by applying large eddy simulation (LES), which aims to model, rather than resolve, motion on scales below the filter length, which is fixed by a model parameter. By considering a periodic spatial domain, we avoid complications that arise in LES modelling in the presence of boundary layers. We consider the motion of an LES fluid subject to a constant body force of the Taylor-Green type as the separation between the forcing length scale and the filter length is increased. In particular, we discuss the transition from laminar to weakly turbulent motion, regulated by simple invariant solution, on a grid of 323 points.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Kawahara, S. Kida, J. Fluid Mech. 449, 291 (2001) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. van Veen, S. Kida, G. Kawahara, Fluid Dyn. Res. 38, 19 (2006) Google Scholar
  3. 3.
    J. Halcrow, J. F. Gibson, P. Cvitanović, V. Viswanath, J. Fluid Mech. 621, 365 (2009) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Lucas, R.R. Kerswell, Phys. Fluids 27, 045106 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum, https://doi.org/ChaosBook.org (Niels Bohr Institute, Copenhagen, 2016)
  6. 6.
    J. Sánchez Umbría, M. Net, Eur. Phys. J. Special Topics 225, 2465 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Orszag, G.S. Patterson, Phys. Rev. Lett. 28, 76 (1972) ADSCrossRefGoogle Scholar
  8. 8.
    P. Constantin, P. Foias, O.P. Manley, R. Temam, J. Fluid Mech. 150, 440, (1985) CrossRefGoogle Scholar
  9. 9.
    J. Sánchez Umbría, M. Net, B. Garcia-Archilla, C. Simó J. Comput. Phys. 201, 13 (2004) Google Scholar
  10. 10.
    J. Smagorinsky, Mon. Weather Rev. 91, 99 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    M. Lesieur, O. Métais, Ann. Rev. Fluid Mech. 28, 45 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    G.I. Taylor, A.E. Green, P. Roy. Soc. Lond. A Mat. 158, 499 (1937) ADSCrossRefGoogle Scholar
  13. 13.
    D. Viswanath, J. Fluid Mech. 580, 339 (2007) ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    G.S. Patterson Jr. S.A. Orszag, Phys. Fluids 14, 2538 (1971) ADSCrossRefGoogle Scholar
  15. 15.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 30, 301 (1941) [English translation in Proc. R. Soc. Lond. A 434, 9 (1991)] ADSGoogle Scholar
  16. 16.
    D.K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, Technical report nr. 281, National Center for Atmospheric Research, Boulder Colorado, USA 1966 Google Scholar
  17. 17.
    A. Muschinski, J. Fluid Mech. 225, 239 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    J. Meyers, P. Sagaut J. Fluid Mech. 569, 287 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    S. Leblanc, F.S. Godeferd, Phys. Fluids 11, 497 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Ontario Institute of TechnologyOshawaCanada
  2. 2.Osaka UniversityToyonaka, OsakaJapan
  3. 3.Imperial CollegeLondonUK

Personalised recommendations