Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 421–444 | Cite as

Strongly correlated non-equilibrium steady states with currents – quantum and classical picture

  • Berislav Buča
  • Tomaž ProsenEmail author
Regular Article
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

In this minireview we will discuss recent progress in the analytical study of current-carrying non-equilibrium steady states (NESS) that can be constructed in terms of a matrix product ansatz. We will focus on one-dimensional exactly solvable strongly correlated cases, and will study both quantum models, and classical models which are deterministic in the bulk. The only source of classical stochasticity in the time-evolution will come from the boundaries of the system. Physically, these boundaries may be understood as Markovian baths, which drive the current through the system. The examples studied include the open XXZ Heisenberg spin chain, the open Hubbard model, and a classical integrable reversible cellular automaton, namely the Rule 54 of A. Bobenko et al. [A. Bobenko et al., Commun. Math. Phys. 158, 127 (1993)] with stochastic boundaries. The quantum NESS can be at least partially understood through the Yang–Baxter integrability structure of the underlying integrable bulk Hamiltonian, whereas for the Rule 54 model NESS seems to come from a seemingly unrelated integrability theory. In both the quantum and the classical case, the underlying matrix product ansatz defining the NESS also allows for construction of novel conservation laws of the bulk models themselves. In the classical case, a modification of the matrix product ansatz also allows for construction of states beyond the steady state (i.e., some of the decay modes – Liouvillian eigenvectors of the model). We hope that this article will help further the quest to unite different perspectives of integrability of NESS (of both quantum and classical models) into a single unified framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982) Google Scholar
  2. 2.
  3. 3.
    V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1997) Google Scholar
  4. 4.
    B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004) Google Scholar
  5. 5.
    L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, Heidelberg, 1987) Google Scholar
  6. 6.
    T. Prosen, J. Phys. A: Math. Theor. 48, 373001 (2015) CrossRefGoogle Scholar
  7. 7.
    T. Prosen, Phys. Rev. Lett. 106, 217206 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    T. Prosen, E. Ilievski, Phys. Rev. Lett. 111, 057203 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    E. Ilievski, M. Medenjak, T. Prosen, Phys. Rev. Lett. 115, 120601 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    E. Ilievski, M. Medenjak, T. Prosen, L. Zadnik, J. Stat. Mech. 2016, 064008 (2016) CrossRefGoogle Scholar
  11. 11.
    E. Ilievski, E. Quinn, J. De Nardis, M. Brockmann, J. Stat. Mech. 2016, 063101 (2016) CrossRefGoogle Scholar
  12. 12.
    J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015) CrossRefGoogle Scholar
  13. 13.
    F.H. Essler, H. Frahm, F. Göhmann, A. Klümper, V.E. Korepin, in The One-Dimensional Hubbard Model (Cambridge University Press, 2005), Vol. 1 Google Scholar
  14. 14.
    R.A. Blythe, M.R. Evans, J. Phys. A: Math. Theor. 40, R333 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    A.B. Zamolodchikov, Sov. Phys. JETP 52, 325 (1980) ADSGoogle Scholar
  16. 16.
    J.J. Mendoza-Arenas, S.R. Clark, D. Jaksch, Phys. Rev. E 91, 042129 (2015) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Ilievski, https://doi.org/arXiv:1612.04352 (2016)
  18. 18.
    B. Everest, I. Lesanovsky, J.P. Garrahan, E. Levi, Phys. Rev. B 95, 024310 (2017) ADSCrossRefGoogle Scholar
  19. 19.
    M. Žnidarič, A. Scardicchio, V.K. Varma, Phys. Rev. Lett. 117, 040601 (2016) CrossRefGoogle Scholar
  20. 20.
    D. Manzano, C. Chuang, J. Cao, New J. Phys. 18, 043044 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    D. Karevski, V. Popkov, G.M. Schütz, https://doi.org/arXiv:1612.03601 (2016)
  22. 22.
    T. Prosen, E. Ilievski, V. Popkov, New J. Phys. 15, 073051 (2013) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    E. Ilievski, B. Žunkovič, J. Stat. Mech. 2014, P01001 (2014) CrossRefGoogle Scholar
  24. 24.
    T. Prosen, Phys. Rev. Lett. 107, 137201 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    S. Wolff, A. Sheikhan, C. Kollath, Phys. Rev. A 94, 043609 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    T. Prosen, C. Mejía-Monasterio, J. Phys. A: Math. Theor. 49, 185003 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    T. Prosen, B. Buča, J. Phys. A: Math. Theor. 50, 395002 (2017) CrossRefGoogle Scholar
  28. 28.
    T. Prosen, Phys. Rev. Lett. 112, 030603 (2014) ADSCrossRefGoogle Scholar
  29. 29.
    V. Popkov, T. Prosen, Phys. Rev. Lett. 114, 127201 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  31. 31.
    V. Gorini, A. Kosakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) ADSCrossRefGoogle Scholar
  32. 32.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, NY, 2002) Google Scholar
  33. 33.
    D. Manzano, P.I. Hurtado, Phys. Rev. B 90, 125138 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Garrahan, I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010) ADSCrossRefGoogle Scholar
  35. 35.
    M. Žnidarič, Phys. Rev. Lett. 112, 040602 (2014) CrossRefGoogle Scholar
  36. 36.
    C. Monthus, J. Stat. Mech. 2017, 043302 (2017) CrossRefGoogle Scholar
  37. 37.
    S. Pigeon, A. Xuereb, J. Stat. Mech. 2016, 063203 (2016) CrossRefGoogle Scholar
  38. 38.
    H. Spohn, Rev. Mod. Phys. 52, 569 (1980) ADSCrossRefGoogle Scholar
  39. 39.
    B. Baumgartner, H. Narnhofer, J. Phys. A: Math. Theor. 41, 395303 (2008) CrossRefGoogle Scholar
  40. 40.
    B. Buča, T. Prosen, New J. Phys. 14, 073007 (2012) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    V.V. Albert, L. Jiang, Phys. Rev. A 89, 022118 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    D.E. Evans, Commun. Math. Phys. 54, 293 (1977) ADSCrossRefGoogle Scholar
  43. 43.
    T. Prosen, New J. Phys. 10, 043026 (2008) ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    M. Žnidarič, J. Stat. Mech. 2010, L05002 (2010) Google Scholar
  45. 45.
    M. Žnidarič, Phys. Rev. E 83, 011108 (2011) ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    P. Kos, T. Prosen, https://doi.org/arXiv:1708.06919 (2017)
  47. 47.
    D. Karevski, V. Popkov, G.M. Schütz, Phys. Rev. Lett. 110, 047201 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    E. Ilievski, T. Prosen, Nucl. Phys. B 882, 485 (2014) ADSCrossRefGoogle Scholar
  49. 49.
    E. Ilievski, Exact solutions of open integrable quantum spin chains, Doctoral dissertation, University of Ljubljana, 2014 Google Scholar
  50. 50.
    B. Sutherland, J. Math. Phys. 11, 3183 (1970) ADSCrossRefGoogle Scholar
  51. 51.
    C. Matsui, T. Prosen, J. Phys. A: Math. Theor. 50, 385201 (2017) ADSCrossRefGoogle Scholar
  52. 52.
    B. Buča, T. Prosen, J. Stat. Mech. 2016, 023102 (2016) CrossRefGoogle Scholar
  53. 53.
    B.S. Shastry, Phys. Rev. Lett. 56, 1529 (1986) ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    F. Gantmacher, in The Theory of Matrices (Chelsea Publishing, reprinted by American Mathematical Society, 2000), Vol. 2 Google Scholar
  55. 55.
    A. Bobenko, M. Bordermann, C. Gunn, U. Pinkall, Commun. Math. Phys. 158, 127 (1993) ADSCrossRefGoogle Scholar
  56. 56.
    N. Crampe, E. Ragoucy, D. Simon, J. Phys. A: Math. Theor. 44, 405003 (2013) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Physics and BiophysicsUniversity of Split School of MedicineSplitCroatia
  2. 2.Clarendon Laboratory, University of OxfordOxfordUK
  3. 3.Department of Physics, Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations