Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 661–672 | Cite as

Impact of human-human contagions in the spread of vector-borne diseases

  • D. Soriano-Paños
  • H. Arias-Castro
  • F. Naranjo-Mayorga
  • J. Gómez-Gardeñes
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

This article is aimed at proposing a generalization of the Ross-Macdonald model for the transmission of Vector-borne diseases in which human-to-human contagions are also considered. We first present this generalized model by formulating a mean field theory, checking its validity by comparing to numerical simulations. To make the premises of our model more realistic, we adapt the mean field equations to the case in which human contacts are described by a complex network. In this case we are also able to derive an analytical expression for the epidemic threshold. In both the mean-field and network-based models, we estimate the value of the epidemic threshold which corresponds to the boundary between the disease-free and epidemic regimes. The expression of this threshold allows us to discuss the impact that human-to-human contagions have on the spread of vector-borne diseases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WHO Factsheet 38, 2014. Google Scholar
  2. 2.
    E.A. Gould, S. Higgs, Trans. R. Soc. Trop. Med. Hyg. 103, 109 (2009) CrossRefGoogle Scholar
  3. 3.
    P.W. Gething et al., Nature 465, 342 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    T.M. Sharp, K.M. Tomashek, Curr. Epi. Rep. 4, 11 (2017) CrossRefGoogle Scholar
  5. 5.
    ECDPC, Development of Aedes albopictus risk maps, 2009 Google Scholar
  6. 6.
    J.E. Brown, E.J. Scholte, M. Dik, H.W. Den, J. Beeuwkes, J.R. Powell, Emerg. Infect Dis. 17, 2335 (2011) CrossRefGoogle Scholar
  7. 7.
    R. Romi, F. Severini, L. Toma, J. Am. Mosq. Control Assoc. 22, 149 (2006) CrossRefGoogle Scholar
  8. 8.
    A. Wilder-Smith et al., Euro Surveill. 19, 20718 (2014) CrossRefGoogle Scholar
  9. 9.
    T. Demir, S. Kilic, Folia Microbiol. 61, 523 (2016) CrossRefGoogle Scholar
  10. 10.
    H. Sakkas, V. Economou, C. Papadopoulou, J. Vector Borne Dis. 53, 305 (2016) Google Scholar
  11. 11.
    World Health Organization, Zika virus, microcephaly and Guillain-Barré syndrome situation report, 2016. Google Scholar
  12. 12.
    F. Grischott, M. Puhan, C. Hatz, P. Schlagenhauf, Travel Med. Infect Dis. 14, 313 (2016) CrossRefGoogle Scholar
  13. 13.
    R.M. Anderson, R.L. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991) Google Scholar
  14. 14.
    J.M. Keeling, P. Rohani, Modeling Infectious Diseases in Humans and Animals (Princeton University Press, Princeton, 2007) Google Scholar
  15. 15.
    N.A. Bacaër, A Short History of Mathematical Population Dynamics (Springer, London, 2011) Google Scholar
  16. 16.
    R. Ross, The prevention of Malaria (John Murray, London, 1911) Google Scholar
  17. 17.
    G. Macdonald, The Epidemiology and Control of Malaria (Oxford University Press, Oxford, 1957) Google Scholar
  18. 18.
    K. Magori, J.M. Drake, Nat. Ed. Knowledge 4, 14 (2013) Google Scholar
  19. 19.
    D.L. Smith et al., PLOS Pathogens 8, 1 (2012) Google Scholar
  20. 20.
    S. Ruan, D. Xiao, J.C. Beier, Bull. Math. Biol. 70, 1098 (2008) MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.M. O’Regan, J.W. Lillie, J.M. Drake, Theor. Ecol. 9, 269 (2016) CrossRefGoogle Scholar
  22. 22.
    R.C. Reiner et al., J. Roy. Soc. Interface 10, 20120921 (2013) CrossRefGoogle Scholar
  23. 23.
    M.E.J. Newman, SIAM Rev. 45, 167 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    S. Boccaletti et al., Phys. Rep. 424, 175 (2006) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Gómez et al., Europhys. Lett. 89, 38009 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    B. Guerra, J. Gómez-Gardeñes, Phys. Rev. E 82, 035101 (2010) ADSCrossRefGoogle Scholar
  27. 27.
    S. Gómez, J. Gómez-Gardeñes, Y. Moreno, A. Arenas, Phys. Rev. E 84, 036105 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010) Google Scholar
  31. 31.
    E. Cho, S.A. Myers, J. Leskovec, in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (ACM, 2011), pp. 1082–1090 Google Scholar
  32. 32.
    A. Allard, B.M. Althouse, S.V. Scarpino, L. Hébert-Dufresne, PNAS 114, 8969 (2017) CrossRefGoogle Scholar
  33. 33.
    A. Allard, B.M. Althouse, L. Hébert-Dufresne, S.V. Scarpino, PLOS Pathogens 13, e1006633 (2017) CrossRefGoogle Scholar
  34. 34.
    B. Visseaux et al., Lancet Infect Dis. 16, 1000 (2016) CrossRefGoogle Scholar
  35. 35.
    E. Nicastri et al., Eurosurveillance 21, 32 (2016) CrossRefGoogle Scholar
  36. 36.
    A.J. Kucharski et al., PLoS Negl. Trop. Dis. 10, e0004726 (2016) CrossRefGoogle Scholar
  37. 37.
    D. Gao et al., Sci. Rep. 6, 28070 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    J. Gómez-Gardeñes, D. Soriano-Paños, A. Arenas, Nat. Phys. 14, 391 (2018) CrossRefGoogle Scholar
  39. 39.
    V. Colizza, R. Pastor-Satorras, A. Vespignani, Nat. Phys. 3, 276 (2007) CrossRefGoogle Scholar
  40. 40.
    V. Belik, T. Geisel, D. Brockmann, Phys. Rev. X 1, 011001 (2011) Google Scholar
  41. 41.
    J.T. Matamalas, M. De Domenico, A. Arenas, J. R. Soc. Interface 13, 20160203 (2016) CrossRefGoogle Scholar
  42. 42.
    S. Polwiang, Peer J. 3, e1069 (2015) CrossRefGoogle Scholar
  43. 43.
    J. Rocklöv et al., EBioMedicine 9, 250 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. Soriano-Paños
    • 1
    • 2
  • H. Arias-Castro
    • 3
  • F. Naranjo-Mayorga
    • 4
  • J. Gómez-Gardeñes
    • 1
    • 2
  1. 1.Departamento de Física de la Materia Condensada, Universidad de ZaragozaZaragozaSpain
  2. 2.GOTHAM lab, Instituto de Biocomputación y Física de Sistemas Complejos BIFI, Universidad de ZaragozaZaragozaSpain
  3. 3.Departamento de Matemáticas, Universidad del ValleSantiago de CaliColombia
  4. 4.Departamento de Física, Universidad Pedagógica y Tecnológica de ColombiaTunjaColombia

Personalised recommendations