The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 301–311 | Cite as

Non-ergodic states induced by impurity levels in quantum spin chains

  • A. O. García Rodríguez
  • G. G. CabreraEmail author
Regular Article
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications


The semi-infinite XY spin chain with an impurity at the boundary has been chosen as a prototype of interacting many-body systems to test for non-ergodic behavior. The model is exactly solvable in analytic way in the thermodynamic limit, where energy eigenstates and the spectrum are obtained in closed form. In addition of a continuous band, localized states may split off from the continuum, for some values of the impurity parameters. In the next step, after the preparation of an arbitrary non-equilibrium state, we observe the time evolution of the site magnetization. Relaxation properties are described by the long-time behavior, which is estimated using the stationary phase method. Absence of localized states defines an ergodic region in parameter space, where the system relaxes to a homogeneous magnetization. Out of this region, impurity levels split from the band, and localization phenomena may lead to non-ergodicity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. von Neumann, Z. Phys. 57, 30 (1929) [English translation (by R. Tumulka), Eur. Phys. J. H 35, 201 (2010)] CrossRefGoogle Scholar
  2. 2.
    S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Eur. Phys. J. H 35, 173 (2010) CrossRefGoogle Scholar
  3. 3.
    P. Bocchieri, A. Loinger, Phys. Rev. 114, 948 (1959) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Popescu, A.J. Short, A. Winter, Nat. Phys. 2, 754 (2006) CrossRefGoogle Scholar
  5. 5.
    P. Reimann, Phys. Rev. Lett. 99, 160404 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H. Tasaki, J. Stat. Phys. 163, 937 (2016) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Bocchieri, A. Loinger, Phys. Rev. 107, 337 (1957) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Tjon, Phys. Rev. B 2, 2411 (1970) ADSCrossRefGoogle Scholar
  10. 10.
    J. Stolze, M. Vogel, Phys. Rev. B 61, 4026 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    V.Z. Kleyner, V.M. Tsukernik, Phys. Met. Metall. 39, 40 (1975) Google Scholar
  12. 12.
    G.O. Berim, S.I. Berim, G.G. Cabrera, Phys. Rev. B 66, 094401 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    A.O. García Rodríguez, G.G. Cabrera, to be published Google Scholar
  14. 14.
    J.J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol and Boston, 1986) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMPCampinasBrazil

Personalised recommendations