Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 16–18, pp 3693–3703 | Cite as

Numerical solution of fractional telegraph differential equations by theta-method

  • Mahmut Modanli
  • Ali AkgülEmail author
Regular Article
Part of the following topical collections:
  1. Fractional Dynamical Systems - Recent Trends in Theory and Applications

Abstract

Difference schemes for theta method are constructed. Theta method is used to deal with fractional telegraph differential equation defined by Caputo fractional derivative for different values of θ = 0.1, 0.5, 0.9 and fractional orders α = 0.05, 0.1, 0.5, 0.9, 0.95. The stability of difference schemes for this problem is proved by matrix method and the stability of the exact solution is also given. Numerical results with respect to the exact solution confirm the accuracy and effectiveness of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Celik, M. Duman, J. Comput. Phys. 231, 1743 (2012) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    I.I. Gorial, Eng. Tech. J. 29, 709 (2011) Google Scholar
  3. 3.
    H. Jafari, V.D. Gejii, Appl. Math. Comput. 180, 488 (2006) MathSciNetGoogle Scholar
  4. 4.
    I. Karatay, S.R. Bayramoglu, A. Sahin, Appl. Numer. Math. 61, 1281 (2011) MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Karatay, S.R. Bayramoglu, A. Sahin, Fract. Calc. Appl. Anal. 16, 892 (2013) MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Su, W. Wang, Z. Yang, Phys. Lett. A 373, 4405 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, J. Comput. Phys. 213, 205 (2006) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Kazem, Int. J. Nonlinear Sci. 16, 3 (2013) MathSciNetGoogle Scholar
  9. 9.
    I. Karatay, N. Kale, S.R. Bayramoglu Erguner, Int. Math. Forum 9, 1757 (2014) CrossRefGoogle Scholar
  10. 10.
    A. Ashyralyev, F. Dal, Discr. Dyn. Nat. Soc. 2012, 1 (2012) Google Scholar
  11. 11.
    M. Aslefallah, D. Rostamy, K. Hosseinkhani, Int. J. Adv. Appl. Math. Mech. 2, 1 (2014) MathSciNetGoogle Scholar
  12. 12.
    A. Ashyralyev, M. Modanli, Bound. Value Probl. 41, 1 (2015) Google Scholar
  13. 13.
    A. Ashyralyev, M. Modanli, AIP Conf. Proc. 1611, 300 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    A. Ashyralyev, M. Modanli, AIP Conf. Proc. 1676, 020078-1 (2015) Google Scholar
  15. 15.
    S. Samko, A. Kibas, O. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach, London, 1993) Google Scholar
  16. 16.
    I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999) Google Scholar
  17. 17.
    V.R. Hosseini, W. Chen, Z. Avazzadeh, Eng. Anal. Bound. Elem. 38, 31 (2014) MathSciNetCrossRefGoogle Scholar
  18. 18.
    V.R. Hosseini, E. Shivanian, W. Chen, Eur. Phys. J. Plus 130, 1 (2015) CrossRefGoogle Scholar
  19. 19.
    V.R. Hosseini, E. Shivanian, W. Chen, J. Comput. Phys. 312, 307 (2016) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    E. Shivanian, S. Abbasbandy, M.S. Alhuthali, H.H. Alsulami, Eng. Anal. Bound. Elem. 56, 98 (2015) MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. Shivanian, H. Khodabandehlo, Eur. Phys. J. Plus 129, 241 (2014) CrossRefGoogle Scholar
  22. 22.
    E. Shivanian, Math. Methods Appl. Sci. 39, 7 (2015) Google Scholar
  23. 23.
    E. Shivanian, K. Arman, J. Theor. Appl. Mech. 55, 571 (2017) CrossRefGoogle Scholar
  24. 24.
    H.R. Khodabandehlo, E. Shivanian, Int. J. Adv. Appl. Math. Mech. 2, 38 (2015) MathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harran University, Faculty of Arts and Sciences, Department of MathematicsŞanlıurfaTurkey
  2. 2.Siirt University, Art and Science Faculty, Department of MathematicsSiirtTurkey

Personalised recommendations