Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 231–246 | Cite as

The smallest absorption refrigerator: the thermodynamics of a system with quantum local detailed balance

  • Felipe Barra
  • Cristóbal Lledó
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

We study the thermodynamics of a quantum system interacting with different baths in the repeated interaction framework. In an appropriate limit, the evolution takes the Lindblad form and the corresponding thermodynamic quantities are determined by the state of the full system plus baths. We identify conditions under which the thermodynamics of the open system can be described only by system properties and find a quantum local detailed balance condition with respect to an equilibrium state that may not be a Gibbs state. The three-qubit refrigerator introduced in Linden et al. [Phys. Rev. Lett. 105, 130401 (2010)] and Skrzypczyk et al. [J. Phys. A: Math. Theory 44, 492002 (2011)] is an example of such a system. From a repeated interaction microscopic model we derive the Lindblad equation that describes its dynamics and discuss its thermodynamic properties for arbitrary values of the internal coupling between the qubits. We find that external power (proportional to the internal coupling strength) is required to bring the system to its steady state, but once there, it works autonomously as discussed in Linden et al. [Phys. Rev. Lett. 105, 130401 (2010)] and Skrzypczyk et al. [J. Phys. A: Math. Theory 44, 492002 (2011)].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kosloff, Entropy 15, 2100 (2013) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 1 (2016) CrossRefGoogle Scholar
  3. 3.
    R. Kosloff, A. Levy, Annu. Rev. Phys. Chem. 65, 365 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  5. 5.
    H.-P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002) Google Scholar
  6. 6.
    V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, E.C.G. Sudarshan, Rep. Math. Phys. 13, 149 (1978) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    E.B. Davies, Commun. Math. Phys. 39, 91 (1974) ADSCrossRefGoogle Scholar
  8. 8.
    E.B. Davies, Math. Ann. 219, 147 (1976) MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Spohn, J.L. Lebowitz, Adv. Chem. Phys. 38, 109 (1978) Google Scholar
  10. 10.
    H. Spohn, Rev. Mod. Phys. 52, 569 (1980) ADSCrossRefGoogle Scholar
  11. 11.
    J. Gooldet al., J. Phys. A: Math. Theory 49, 143001 (2016) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Wichterich, M.J. Henrich, H.-P. Breuer, J. Gemmer, M. Michel, Phys. Rev. E 76, 031115 (2007) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Rivas, A.D.K. Plato, S.F. Huelga, M.B. Plenio, New J. Phys. 12, 113032 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    A. Levy, R. Kosloff, EPL 107, 20004 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    J.T. Stockburger, T. Motz, Prog. Phys. 65, 1600067 (2017) Google Scholar
  16. 16.
    P.D. Manrique, F. Rodríguez, L. Quiroga, N.F. Johnson, Adv. Condens. Matter Phys. 2015, 7 (2015) CrossRefGoogle Scholar
  17. 17.
    A.S. Trushechkin, I.V. Volovich, EPL 113, 30005 (2016) CrossRefGoogle Scholar
  18. 18.
    A. Purkayastha, A. Dhar, M. Kulkarni, Phys. Rev. A 93, 062114 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    P.R. Eastham, P. Kirton, H.M. Cammack, B.W. Lovett, J. Keeling, Phys. Rev. A 94, 012110 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    J.O. González, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso, Open Syst. Inf. Dyn. 24, 1740010 (2017) MathSciNetCrossRefGoogle Scholar
  21. 21.
    P.P. Hofer, M. Perarnau-Llobet, L.D.M. Miranda, G. Haack, R. Silva, J.B. Brask, N. Brunner, New J. Phys. 19, 123037 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    M.T. Mitchison, M.B. Plenio, New J. Phys 20, 033005 (2018). Google Scholar
  23. 23.
    N. Linden, S. Popescu, P. Skrzypczyk, Phys. Rev. Lett. 105, 130401 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    P. Skrzypczyk, N. Brunner, N. Linden, S. Popescu, J. Phys. A: Math. Theory 44, 492002 (2011) CrossRefGoogle Scholar
  25. 25.
    D. Spehner, M. Orszag, J. Math. Phys. 43, 3511 (2002) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S. Attal, Y. Pautrat, Ann. Inst. Henri Poincaré 7, 59104 (2006) Google Scholar
  27. 27.
    S. Attal, A. Joye, J. Stat. Phys. 126, 1241 (2007) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Karevski, T. Platini, Phys. Rev. Lett. 102, 207207 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    F. Barra, Sci. Rep. 5, 14873 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Phys. Rev. X 7, 021003 (2017) Google Scholar
  31. 31.
    F. Barra, C. Lledó, Phys. Rev. E 96, 052114 (2017) ADSCrossRefGoogle Scholar
  32. 32.
    M. Esposito, K. Lindenberg, C. Van den Broeck, New J. Phys. 12 013013 (2010) ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Manzano, J.M. Horowitz, J.M.R. Parrondo, Phys. Rev. E 92 032129 (2015) ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Alicki, Rep. Math. Phys. 10, 249 (1976) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Spohn, J. Math. Phys. 19, 1227 (1978) ADSCrossRefGoogle Scholar
  36. 36.
    L.A. Correa, J.P. Palao, G. Adesso, D. Alonso, Phys. Rev. E 87, 042131 (2013) ADSCrossRefGoogle Scholar
  37. 37.
    Y.-X. Chen, S.-W. Li, EPL 97, 40003 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    P.P. Hofer, M. Perarnau-Llobet, J.B. Brask, R. Silva, M. Huber, N. Brunner, Phys. Rev. B 94, 235420 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de ChileSantiagoChile

Personalised recommendations