Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 16–18, pp 3577–3590 | Cite as

On fractional Langevin differential equations with anti-periodic boundary conditions

  • Hui Zhou
  • Jehad AlzabutEmail author
  • Liu Yang
Regular Article
Part of the following topical collections:
  1. Fractional Dynamical Systems - Recent Trends in Theory and Applications

Abstract

In this paper, we provide existence criteria for the solutions of p-Laplacian fractional Langevin differential equations with anti-periodic boundary conditions. The Caputo fractional as well as Caputo q-fractional operators are used to address the derivatives. The main results are verified by the help of Leray–Schaefer’s fixed point theorem. We construct an example to illustrate the feasibility of the main theorems. Our results are new and provide extensions to some known theorems in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach, Yverdon, 1993) Google Scholar
  2. 2.
    I. Podlubny, Fractional differential equations (Academic Press, San Diego, CA, 1999) Google Scholar
  3. 3.
    A. Kilbas, H.M. Srivastava, J.J. Trujillo, in Theory and application of fractional differential equations, North Holland mathematics studies (2006), Vol. 204 Google Scholar
  4. 4.
    L. Debnath, Int. J. Math. Math. Sci. 2003, 3413 (2003) CrossRefGoogle Scholar
  5. 5.
    R. Finkelstein, E. Marcus, J. Math. Phys. 36, 2652 (1995) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Finkelstein, J. Math. Phys. 37, 2628 (1996) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Floreanini, L. Vinet, Mod. Phys. Lett. A 180, 393 (1993) CrossRefGoogle Scholar
  8. 8.
    R. Floreanini, L. Vinet, Lett. Math. Phys. 32, 37 (1994) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Floreanini, L. Vinet, J. Math. Phys. 36, 3134 (1995) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P.G.O. Freund, A.V, Zabrodin, Commun. Math. Phys. 173, 17 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    T. Abdeljawad, J. Alzabut, J. Funct. Spaces Appl. 2013, 543839 (2013) CrossRefGoogle Scholar
  12. 12.
    R.P. Agarwal, Proc. Camb. Philos. Soc. 66, 365 (1969) ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Annaby, Z.S. Mansour, q-Fractional calculus and equations, in Lecture notes in mathematics (Springer-Verlag, Berlin, 2012), Vol. 2056 Google Scholar
  14. 14.
    T. Abdeljawad, J. Alzabut, D. Baleanu, J. Inequal. Appl. 2016, 240 (2016) CrossRefGoogle Scholar
  15. 15.
    W. Yang, Filomat 30, 2521 (2016) MathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Abdeljawad, J. Alzabut, Hui Zhou, Appl. Math. E Notes 17, 307 (2017) MathSciNetGoogle Scholar
  17. 17.
    T. Abdeljawad, J. Alzabut, Math. Methods Appl. Sci. (2018). DOI:  https://doi.org/10.1002/mma.4743
  18. 18.
    P. Langevin, CR Acad. Sci. Paris 146, 530 (1908) Google Scholar
  19. 19.
    W. Coffey, Y. Kalmykov, J. Waldron, The Langevin equation with applications to stochastic problems in physics, chemistry and electrical engineering (World Scientific, River Edge, NJ, USA, 2004) Google Scholar
  20. 20.
    R. Klages, G. Radons, M. Sokolov, Anomalous transport: foundations and applications (Wiley-, Weinheim, 2008) Google Scholar
  21. 21.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966) ADSCrossRefGoogle Scholar
  22. 22.
    F. Mainardi, P. Pironi, Extracta Math. 11, 140 (1996) MathSciNetGoogle Scholar
  23. 23.
    S. Burov, E. Barkai, Phys. Rev. Lett. 100, 070601 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    R.F. Camargo, A.O. Chiacchio, R. Charnet, E.C. Oliveira, J. Math. Phys. 50, 063507 (2009) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.-H. Jeon, R. Metzler, Phys. Rev. E 81, 021103 (2010) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    P. Guo, C. Zeng, C. Li, Y.Q. Chen, Fract. Calculus Appl. Anal. 16, 123 (2013) MathSciNetGoogle Scholar
  27. 27.
    S. Lim, M. Li, L. Teo, Phys. Lett. A 372, 6309 (2008) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    B. Ahmad, J. Nieto, Int. J. Differ. Equ. 2010, 1649486 (2010) Google Scholar
  29. 29.
    B. Ahmad, J. Nieto, A. Alsaedi, M. El-Shahed, Nonlinear Anal. Real World Appl. 13, 599 (2012) MathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Torres, J. Qual. Theory Differ. Equ. 2014, 1 (2014) Google Scholar
  31. 31.
    C.S. Goodrich, Appl. Math. Lett. 25, 1101 (2012) MathSciNetCrossRefGoogle Scholar
  32. 32.
    J.R. Graef, L. Kong, Q. Kong, M. Wang, Appl. Anal. 92, 2008 (2013) MathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Xuezhu, M. Milan, W.J. Rong, Naturalium. Math. 53, 85 (2014) Google Scholar
  34. 34.
    A. Anguraj, M. Kasthuri, P. Karthikeyan, Int. J. Anal. Appl. 5, 56 (2014) Google Scholar
  35. 35.
    A.G. Lakoud, R. Khaldi, A. K"i"l"i"çman, Adv. Differ. Equ. 2017, 164 (2017) CrossRefGoogle Scholar
  36. 36.
    B. Ahmad, J.J. Nieto, Comput. Math. Appl. 62, 1150 (2011) MathSciNetCrossRefGoogle Scholar
  37. 37.
    M. Benchohra, N. Hamidi, J. Henderson, Numer. Funct. Anal. Optim. 34, 404 (2013) MathSciNetCrossRefGoogle Scholar
  38. 38.
    B. Ahmad, J.J. Nieto, A. Alsaedi, H. Al-Hutami, J. Contemp. Math. Anal. 49, 277 (2014) MathSciNetCrossRefGoogle Scholar
  39. 39.
    B. Abdallah, T. Abdeljawad, Commun. Fac. Sci. Univ. Ank. Ser. A1 63, 91 (2014) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Science, University of Science and Technology of ChinaHefeiP.R. China
  2. 2.Department of Mathematics and General SciencesPrince Sultan UniversityRiyadhSaudi Arabia
  3. 3.School of Mathematics and Statistics, Hefei Normal UniversityHefeiP.R. China

Personalised recommendations