Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 259–268 | Cite as

Magnetic fields: a tool for the study of organic solar cells

  • Santiago Oviedo-Casado
  • Antonio Urbina
  • Javier Prior
Regular Article
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

Charge transfer in polymer devices represents a crucial, though highly inaccessible stage of photocurrent generation. In this article we propose studying the properties and behaviour of organic solar cells through the modification of photocurrent generation when an external magnetic field is applied. By allowing the parameters of our theoretical model not to be constrained to any specific material, we are able to show that not only a modest external magnetic field leads to a significant increase in photocurrent intensity, but also how such magnetic field can be used to study in detail the energy levels and transition rates within the polymer compound. Systematic exploration of key properties in organic composites thus can lead to highly optimised devices in which a magnetic field produces an enhancement in the efficiency of polymer solar cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt.: Res. Appl. 23, 1 (2015) CrossRefGoogle Scholar
  2. 2.
    S.D. Dimitrov, J.R. Durrant, Chem. Mater. 26, 616 (2014) CrossRefGoogle Scholar
  3. 3.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photon. 6, 591 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789 (2006) CrossRefGoogle Scholar
  5. 5.
    C.X. Sheng, Z.V. Vardeny, in Optical Studies of Photoexcitations in Polymer/Fullerene Blends for Organic Photovoltaic Applications, (Springer-Verlag, Berlin, Heidelberg, 2015) p. 3 Google Scholar
  6. 6.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. Sun Moon, D. Moses, M. Leclerc, K. Lee, A.J Heeger, Nat. Photon. 3, 297 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, Nat. Mater. 8, 904 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend, Science 335, 1340 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, R.H. Friend, Science 343, 512 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    A. Rao, P.C.Y. Chow, S. Gélinas, C.W. Schlenker, C.-Z. Li, H.-L. Yip, A.K.-Y. Jen, D.S. Ginger, R.H. Friend, Nature 500, 435 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    C. Deibel, T. Strobel, V. Dyakonov, Adv. Mater. 22, 4097 (2010) CrossRefGoogle Scholar
  12. 12.
    P.B. Deotare, W. Chang, E. Hontz, D.N. Congreve, L. Shi, P.D. Reusswig, B. Modtland, M.E. Bahlke, C.K. Lee, A.P. Willard, V. Bulović, T. Van Voorhis, M.A. Baldo, Nat. Mater. 14, 1130 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    D. Veldman, S.C.J. Meskers, R.A.J. Janssen, Adv. Funct. Mater. 19, 1939 (2009) CrossRefGoogle Scholar
  14. 14.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961) ADSCrossRefGoogle Scholar
  15. 15.
    S. Oviedo-Casado, A. Urbina, J. Prior, Sci. Rep. 7, 4297 (2017) ADSCrossRefGoogle Scholar
  16. 16.
    R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo, Nat. Mater. 12, 1038 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    K. Schulten, P.G. Wolynes, J. Chem. Phys. 68, 3292 (1978) ADSCrossRefGoogle Scholar
  18. 18.
    E.L. Frankevich, A.A. Lymarev, I.A. Sokolik, Chem. Phys. 162, 1 (1992) CrossRefGoogle Scholar
  19. 19.
    A.E. Cohen, J. Phys. Chem. A 113, 11084 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    E. Hontz, W. Chang, D.N. Congreve, V. Bulović, M.A. Baldo, T. Van Voorhis, J. Phys. Chem. C 119, 25591 (2015) CrossRefGoogle Scholar
  21. 21.
    Y. Wang, K. Sahin-Tiras, N.J. Harmon, M. Wohlgenannt, M.E. Flatté, Phys. Rev. X 6, 011011 (2016) Google Scholar
  22. 22.
    X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R. Ortiz Ponce, J.T. Lopez Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Fachetti, T.J. Marks, Nat. Photon. 7, 825 (2013) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Física Aplicada, Universidad Politécnica de CartagenaCartagenaSpain
  2. 2.Departamento de Electrónica, Universidad Politécnica de CartagenaCartagenaSpain
  3. 3.Instituto Carlos I de Física Teórica y Computacional, Universidad de GranadaGranadaSpain

Personalised recommendations