Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 3–4, pp 269–284 | Cite as

Quantum phase transitions in a frustration-free spin chain based on modified Motzkin walks

  • Fumihiko Sugino
  • Pramod Padmanabhan
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Quantum Systems In and Out of Equilibrium - Fundamentals, Dynamics and Applications

Abstract

Area law violations for entanglement entropy in the form of a square root has recently been studied for one-dimensional frustration-free quantum systems based on the Motzkin walks and their variations. Here, we further modify the Motzkin walks using the elements of a symmetric inverse semigroup as basis states on each step of the walk. This change alters the number of paths allowed in the Motzkin walks and by introducing an appropriate term in the Hamiltonian with a tunable parameter we show that we can jump from a state that violates the area law logarithmically to a state that obeys the area law providing an example of quantum phase transition in a one-dimensional system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    R. Orus, Ann. Phys. 349, 117 (2014) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    M.B. Hastings, JSTAT 73, P08024 (2007) Google Scholar
  5. 5.
    I. Arad, A. Kitaev, Z. Landau, U. Vazirani, https://doi.org/arXiv:1301.1162 [quant-ph] (2013)
  6. 6.
    T. Nishioka, S. Ryu, T. Takayanagi, J. Phys. A42, 504008 (2009) Google Scholar
  7. 7.
    J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    N. Laflorencie, Phys. Rep. 643, 1 (2016) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D.N. Page, Phys. Rev. Lett. 71, 1291 (1993) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.K. Foong, S. Kanno, Phys. Rev. Lett. 72, 1148 (1994) ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Sen, Phys. Rev. Lett. 77, 1 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    S. Irani, J. Math. Phys. 51, 022101 (2010) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Yan, D.A. Huse, S.R. White, Science 332, 1173 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    D. Gottesman, M.B. Hastings, New J. Phys. 12, 025002 (2010) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G. Vitagliano, A. Riera, J.I. Latorre, https://doi.org/arXiv:1003.1292 [quant-ph] (2010)
  16. 16.
    G. Ramírez, J.R. Laguna, G. Sierra, J. Stat. Mech. 2014, P10004 (2014) CrossRefGoogle Scholar
  17. 17.
    O. Salberger, V. Korepin, https://doi.org/arXiv:1605.03842 [quant-ph] (2016)
  18. 18.
    S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, P.W. Shor, Phys. Rev. Lett. 109, 207202 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    L. Huijse, B. Swingle, Phys. Rev. B 87, 035108 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    R. Movassagh, https://doi.org/arXiv:1606.09313 [quant-ph] (2016)
  21. 21.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009) MathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994) ADSCrossRefGoogle Scholar
  24. 24.
    C. Callan, F. Wilczek, Phys. Lett. B 333, 55 (1994) ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    D. Gioev, I. Klich, Phys. Rev. Lett. 96, 100503 (2006) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Movassagh, P.W. Shor, Proc. Natl. Acad. Sci. 113, 201605716 (2016) CrossRefGoogle Scholar
  28. 28.
    O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, I. Klich, V. Korepin, J. Stat. Mech. 1706, 063103 (2017) CrossRefGoogle Scholar
  29. 29.
    Z. Zhang, I. Klich, https://doi.org/arXiv:1702.03581 [cond-mat.stat-mech] (2017)
  30. 30.
    Z. Zhang, A. Ahmadain, I. Klich, https://doi.org/arXiv:1606.07795 [quant-ph] (2016)
  31. 31.
    J. Kellendonk, M.V. Lawson, J. Algebra 224, 140 (2000) MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Senechal, Quasicrystals and Geometry (Cambridge University Press, 1995) Google Scholar
  33. 33.
    R. Exel, D. Goncalves, C. Starling, https://doi.org/arXiv:1106.4535 [math.OA] (2011)
  34. 34.
    P. Padmanabhan, S.-J. Rey, D. Teixeira, D. Trancanelli, JHEP 1705, 136 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    V.V. Wagner, J. Lond. Math. Soc. 29, 411 (1954) Google Scholar
  36. 36.
    M.V. Lawson, Inverse Semigroups – The Theory of Partial Symmetries (World Scientific, 1998) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fields, Gravity & Strings, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonRepublic of Korea

Personalised recommendations