Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 509–520 | Cite as

Acceleration of chemical reaction fronts

II. Gas-phase-diffusion limited frontal dynamics
  • Osamu Inomoto
  • Marcus J. B. Hauser
  • Ryo Kobayashi
  • Stefan C. Müller
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

The propagation of reaction-diffusion fronts in an open liquid solution layer is critically affected by mass transfer between the liquid solution and the adjacent gas phase. This is the case in the iodate–arsenous acid (IAA) reaction when run under stoichiometric excess of iodate. Here, iodine is the reaction product, which has a low solubility in the liquid phase, hence, excess iodine rapidly evaporates. In the gas phase, it diffuses and overtakes the reaction front propagating in the liquid medium because its diffusion coefficient in the gas phase is considerably larger than that in aqueous solution. Evaporated iodine is re-dissolved into the reaction medium ahead of the reaction front. Since iodine is the autocatalytic species of the IAA reaction, this additional gas-phase transport may lead to an acceleration of the propagating reaction front.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems (John Wiley and Sons, New York, 1985) Google Scholar
  2. 2.
    R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer Academic Press, Dordrecht, 1995) Google Scholar
  3. 3.
    A. Hanna, A. Saul, K. Showalter, J. Am. Chem. Soc. 104, 3838 (1982) CrossRefGoogle Scholar
  4. 4.
    T.A. Gribschaw, K. Showalter, D. Banville, I.R. Epstein, J. Phys. Chem. 85, 2152 (1981) CrossRefGoogle Scholar
  5. 5.
    J.A. Pojman, I.R. Epstein, J. Phys. Chem. 94, 4966 (1990) CrossRefGoogle Scholar
  6. 6.
    J.A. Pojman, I.R. Epstein, T.J. McManus, K. Showalter, J. Phys. Chem. 95, 1299 (1991) CrossRefGoogle Scholar
  7. 7.
    D. Vasquez, J. Littley, J.W. Wilder, B.F. Edwards, Phys. Rev. E 50, 280 (1994) ADSCrossRefGoogle Scholar
  8. 8.
    M.J.B. Hauser, R.H. Simoyi, Phys. Lett. A 191, 31 (1994) ADSCrossRefGoogle Scholar
  9. 9.
    M.J.B. Hauser, R.H. Simoyi, Chem. Phys. Lett. 227, 593 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    K. Matthiessen, S.C. Müller, Phys. Rev. E 52, 492 (1995) ADSCrossRefGoogle Scholar
  11. 11.
    B.S. Martincigh, M.J.B. Hauser, R.H. Simoyi, Phys. Rev. E 52, 6146 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    K. Matthiessen, H. Wilke, S.C. Müller, Phys. Rev. E 53, 6056 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    J. Martin, N. Rakotomalala, D. Salin, M. Böckmann, Phys. Rev. E 65, 051605 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    D. Horváth, T.J. Bánsági Jr., Á. Tóth, J. Chem. Phys. 117, 4399 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    T.J. Bánsági, D. Horváth, Á. Tóth, Phys. Rev. E 68, 026303 (2003) CrossRefGoogle Scholar
  16. 16.
    L. Šebestíková, J. D’Hernoncourt, M.J.B. Hauser, S.C. Müller, A. De Wit, Phys. Rev. E 75, 026309 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    L. Rongy, G. Schuszter, Z. Sinko, T. Tóth, D. Horváth, Á. Tóth, A. De Wit, Chaos 19, 023110 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    I. Bou Malham, N. Jarrige, J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Chem. Phys. 133, 244505 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    H. Miike, H. Yamamoto, S. Kai, S.C. Müller, Phys. Rev. E 48, R1627 (1993) ADSCrossRefGoogle Scholar
  20. 20.
    B.F. Edwards, J.W. Wilder, K. Showalter, Phys. Rev. A 43, 749 (1991) ADSCrossRefGoogle Scholar
  21. 21.
    M. Böckmann, S.C. Müller, Phys. Rev. Lett. 85, 2506 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    A. De Wit, Phys. Rev. Lett. 87, 054502 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    M. Böckmann, S.C. Müller, Phys. Rev. E 70, 046302 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    A. De Wit, Phys. Fluids 16, 163 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    L. Rongy, N. Goyal, E. Meiburg, A. De Wit, J. Chem. Phys. 127, 114710 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    L. Šebestíková, M.J.B. Hauser, Phys. Rev. E 85, 036303 (2012) CrossRefGoogle Scholar
  27. 27.
    L. Šebestíková, Phys. Rev. E 88, 033023 (2013) CrossRefGoogle Scholar
  28. 28.
    É. Pópity-Tóth, V. Pimienta, D. Horváth, Á. Tóth, J. Chem. Phys. 139, 164707 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    É. Pópity-Tóth, G. Pótári, I. Erdös, D. Horváth, Á. Tóth, J. Chem. Phys. 141, 044719 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    D. Horváth, M.A. Budroni, P. Bába, L. Rongy, A. De Wit, K. Eckert, M.J.B. Hauser, Á. Tóth, Phys. Chem. Chem. Phys. 16, 26279 (2014) CrossRefGoogle Scholar
  31. 31.
    O. Inomoto, S.C. Müller, R. Kobayashi, M.J.B. Hauser, Eur. Phys. J. Special Topics 227, 493 (2018) Google Scholar
  32. 32.
    D.M. Weitz, I.R. Epstein, J. Chem. Phys. 88, 5300 (1984) CrossRefGoogle Scholar
  33. 33.
    G. Bazsa, I.R. Epstein, J. Chem. Phys. 89, 3050 (1985) CrossRefGoogle Scholar
  34. 34.
    H. Miike, S.C. Müller, B. Hess, Phys. Rev. Lett. 61, 2109 (1988) ADSCrossRefGoogle Scholar
  35. 35.
    S. Kai, H. Miike, Physica A 204, 346 (1994) ADSCrossRefGoogle Scholar
  36. 36.
    M. Diewald, K. Matthiessen, S.C. Müller, H.R. Brand, Phys. Rev. Lett. 77, 4466 (1996) ADSCrossRefGoogle Scholar
  37. 37.
    O. Inomoto, T. Ariyoshi, S. Inanaga, S. Kai, Int. J. Bifurcation Chaos 7, 989 (1997) ADSCrossRefGoogle Scholar
  38. 38.
    O. Inomoto, K. Abe, T. Amemiya, T. Yamaguchi, S. Kai, Phys. Rev. E 61, 5326 (2000) ADSCrossRefGoogle Scholar
  39. 39.
    H. Kitahata, R. Aihara, N. Magome, K. Yoshikawa, J. Chem. Phys. 116, 5666 (2002) ADSCrossRefGoogle Scholar
  40. 40.
    L. Rongy, A. De Wit, J. Chem. Phys. 124, 164705 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    L. Rongy, A. De Wit, J. Eng. Math. 59, 221 (2007) CrossRefGoogle Scholar
  42. 42.
    L. Rongy, A. De Wit, Phys. Rev. E 77, 046310 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    L. Rongy, P. Assemat, A. De Wit, Chaos 22, 037106 (2012) ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Budroni, L. Rongy, A. De Wit, Phys. Chem. Chem. Phys. 14, 14619 (2012) CrossRefGoogle Scholar
  45. 45.
    R. Guzman, D.A. Vasquez, Eur. Phys. J. Special Topics 225, 2573 (2016) ADSCrossRefGoogle Scholar
  46. 46.
    R. Tiani, L. Rongy, J. Chem. Phys. 145, 124701 (2016) ADSCrossRefGoogle Scholar
  47. 47.
    P. Bába, L. Rongy, A. De Wit, M.J.B. Hauser, Á. Tóth, D. Horváth, Phys. Rev. Lett. 121, 024501 (2018) ADSCrossRefGoogle Scholar
  48. 48.
    J.H. Merkin, H. Ševčíková, Phys. Chem. Chem. Phys. 1, 91 (1999) CrossRefGoogle Scholar
  49. 49.
    J.-C. Micheau, M. Gimenez, P. Borckmans, G. Dewel, Nature 305, 43 (1983) ADSCrossRefGoogle Scholar
  50. 50.
    D. Avnir, M. Kagan, Nature 307, 717 (1984) ADSCrossRefGoogle Scholar
  51. 51.
    A.J. Pons, F. Sagués, M.A. Bees, P.G. Sørensen, J. Chem. Phys. B 104, 2251 (2000) CrossRefGoogle Scholar
  52. 52.
    M.J.B. Hauser, J. Oberender, S. Richter, K. Bartels, S.C. Müller, Physica D 205, 170 (2005) ADSCrossRefGoogle Scholar
  53. 53.
    W. Li, J.Q. Xiong, B.S. Cohen, Aerosol Sci. Tech. 28, 502 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Osamu Inomoto
    • 1
    • 2
  • Marcus J. B. Hauser
    • 1
    • 3
  • Ryo Kobayashi
    • 4
  • Stefan C. Müller
    • 1
  1. 1.Institut für Physik, Otto-von-Guericke Universität MagdeburgMagdeburgGermany
  2. 2.Hyogo University of Teacher EducationKato City, HyogoJapan
  3. 3.Institut für Biometrie und Medizinische Informatik, Otto-von-Guericke Universität MagdeburgMagdeburgGermany
  4. 4.Department of Mathematical and Life SciencesHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations