Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 493–507 | Cite as

Acceleration of chemical reaction fronts

I. Surface tension-driven convection
  • Osamu Inomoto
  • Stefan C. Müller
  • Ryo Kobayashi
  • Marcus J. B. Hauser
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

Chemical fronts and waves travelling in reaction-diffusion systems frequently induce hydrodynamic flow. This adds an additional transport process to the mechanism of spatio-temporal structure formation and can lead to an acceleration of the chemical (reaction) front. We report on the acceleration of travelling chemical fronts elicited by convection, as caused by the Marangoni effect in the monostable iodate-arsenous acid reaction in a thin liquid film. At a stoichiometric excess of iodate over arsenous acid, the reaction produces a large amount of iodine, which is surface-active. At the reaction front, iodine is transferred from the bulk to the surface inducing spatio-temporal gradients of surface tension that lead to capillary flows. These flows, in turn, promote further iodine adsorption at the surface through hydrodynamic mixing effects. As a consequence, an acceleration of the chemical fronts is observed, even if the concentration difference across the front is constant. After the transient acceleration of the reaction front, it settles at a constant propagation velocity, which is assumed to be regulated by a balance in the mass transfer between the bulk and the surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Böckmann, S.C. Müller, Phys. Rev. E 70, 046302 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    D. Horváth, T. Jr. Bánsági, Á. Tóth, J. Chem. Phys. 117, 4399 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    A. De Wit, Phys. Fluids 16, 163 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    A. De Wit, Phys. Rev. Lett. 87, 054502 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    K. Eckert, A. Grahn, Phys. Rev. Lett. 82, 4436 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Shi, K. Eckert, Chem. Eng. Sci. 61, 5523 (2006) CrossRefGoogle Scholar
  7. 7.
    I. Bou Malham, N. Jarrige, J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Chem. Phys. 133, 244505 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer Academic Press, Dordrecht, 1995) Google Scholar
  9. 9.
    I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University Press, New York, 1998) Google Scholar
  10. 10.
    J.A. Pojman, I.R. Epstein, T.J. McManus, K. Showalter, J. Phys. Chem. 95, 1299 (1991) CrossRefGoogle Scholar
  11. 11.
    D.A. Vasquez, J.M. Littley, J.W. Wilder, B.F. Edwards, Phys. Rev. E 50, 280 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Wu, D.A. Vasquez, B.F. Edwards, J.W. Wilder, Phys. Rev. E 51, 1119 (1995) ADSCrossRefGoogle Scholar
  13. 13.
    D. Horváth, M.A. Budroni, P. Bába, L. Rongy, A. De Wit, K. Eckert, M.J.B. Hauser, Á Tóth, Phys. Chem. Chem. Phys. 16, 26279 (2014) CrossRefGoogle Scholar
  14. 14.
    S.C. Müller, T. Plesser, B. Hess, Ber. Bunsenges. Phys. Chem. 89, 654 (1985) CrossRefGoogle Scholar
  15. 15.
    M.A. Bees, A.J. Pons, P.G. Sørensen, F. Sagués, J. Chem. Phys. 114, 1932 (2001) Google Scholar
  16. 16.
    H. Miike, S.C. Müller, B. Hess, Phys. Rev. Lett. 61, 2109 (1988) ADSCrossRefGoogle Scholar
  17. 17.
    K. Matthiessen, H. Wilke, S.C. Müller, Phys. Rev. E 53, 6056 (1996) ADSCrossRefGoogle Scholar
  18. 18.
    M. Diewald, K. Matthiessen, S. C. Müller, H.R. Brand, Phys. Rev. Lett. 77, 4466 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    M.J.B. Hauser, R.H. Simoyi, Phys. Lett. A 191, 31 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    M.J.B. Hauser, R.H. Simoyi, Chem. Phys. Lett. 227, 593 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    B. Matincigh, M.J.B. Hauser, R. Simoyi, Phys. Rev. E 52, 6146 (1995) ADSCrossRefGoogle Scholar
  22. 22.
    K. Yoshikawa, T. Kusumi, M. Ukitsu, S. Nakata, Chem. Phys. Lett. 211, 211 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    L. Rongy, A. De Wit, J. Chem. Phys. 124, 164705 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    L. Rongy, A. De Wit, Phys. Rev. E 77, 046310 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    L. Rongy, A. De Wit, G.M. Homsy, Phys. Fluids 20, 072103 (2008) ADSCrossRefGoogle Scholar
  26. 26.
    L. Šebestíková, M.J.B. Hauser, Phys. Rev. E 85, 036303 (2012) CrossRefGoogle Scholar
  27. 27.
    L. Šebestíková, Phys. Rev. E 88, 033023 (2013) CrossRefGoogle Scholar
  28. 28.
    L. Rongy, P. Assemat, A. De Wit, Chaos 22, 037106 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    M.A. Budroni, L. Rongy, A. De Wit, Phys. Chem. Chem. Phys. 14, 14619 (2012) CrossRefGoogle Scholar
  30. 30.
    É. Pópity-Tóth, V. Pimienta, D. Horváth, Á. Tóth, J. Chem. Phys. 139, 164707 (2013) ADSCrossRefGoogle Scholar
  31. 31.
    É. Pópity-Tóth, G. Pótári, I. Erdös , D. Horváth, Á. Tóth, J. Chem. Phys. 141, 044719 (2014) ADSCrossRefGoogle Scholar
  32. 32.
    R. Guzman, D.A. Vasquez, Eur. Phys. J. Special Topics 225, 2573 (2016) ADSCrossRefGoogle Scholar
  33. 33.
    R. Tiani, L. Rongy, J. Chem. Phys. 145, 124701 (2016) ADSCrossRefGoogle Scholar
  34. 34.
    P. Bába, L. Rongy, A. De Wit, M.J.B. Hauser, Á. Tóth, D. Horváth, Phys. Rev. Lett. 121, 024501 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958) ADSCrossRefGoogle Scholar
  36. 36.
    H.R. Brand, S.C. Müller, in Evolution of spontaneous structures in dissipative continuous systems, edited by F.H. Busse, S.C. Müller (Springer, Berlin, 1998), Vol. 411 Google Scholar
  37. 37.
    O. Inomoto, M.J.B. Hauser, R. Kobayashi, S.C. Müller, Eur. Phys. J. Special Topics 227, 509 (2018) Google Scholar
  38. 38.
    C. Normand, Y. Pomeau, M.G. Velarde, Rev. Mod. Phys. 49, 581 (1977) ADSCrossRefGoogle Scholar
  39. 39.
    T.A. Gribschaw, K. Showalter, D.L. Banville, I.R. Epstein, J. Phys. Chem. 85, 2152 (1981) CrossRefGoogle Scholar
  40. 40.
    A. Hanna, A. Saul, K. Showalter, J. Am. Chem. Soc. 104, 3838 (1982) CrossRefGoogle Scholar
  41. 41.
    J. Masere, D.A. Vasquez, B.F. Edwards, J.W. Wilder, K. Showalter, J. Phys. Chem. 98, 6505 (1994) CrossRefGoogle Scholar
  42. 42.
    J.H. Merkin, H. Ševčíková, Phys. Chem. Chem. Phys. 1, 91 (1999) CrossRefGoogle Scholar
  43. 43.
    D.M. Weitz, I.R. Epstein, J. Phys. Chem. 88, 5300 (1984) CrossRefGoogle Scholar
  44. 44.
    G. Bazsa, I.R. Epstein, J. Phys. Chem. 89, 3050 (1985) CrossRefGoogle Scholar
  45. 45.
    S. Kai, Pattern formation in complex dissipative systems (World Scientific, Singapore, 1992) Google Scholar
  46. 46.
    H. Miike, H. Yamamoto, S. Kai, S.C. Müller, Phys. Rev. E 48, 1627 (1993) ADSCrossRefGoogle Scholar
  47. 47.
    S. Kai, H. Miike, Physica A 204, 346 (1994) ADSCrossRefGoogle Scholar
  48. 48.
    O. Inomoto, T. Ariyoshi, S. Inanaga, S. Kai, Int. J. Bifurc. Chaos 7, 989 (1997) CrossRefGoogle Scholar
  49. 49.
    O. Inomoto, K. Abe, T. Amemiya, T. Yamaguchi, S. Kai, Phys. Rev. E 61, 5326 (2000) ADSCrossRefGoogle Scholar
  50. 50.
    G. Flätgen, K. Krischer, Phys. Rev. E 51, 3997 (1995) ADSCrossRefGoogle Scholar
  51. 51.
    T.J. McManus, Ph.D. thesis, West Virginia University, Morgantown, WV, USA, 1989 Google Scholar
  52. 52.
    K. Showalter, in Kinetics of Nonhomogeneous Processes, edited by G.R. Freeman (Wiley, New York, 1987) Google Scholar
  53. 53.
    Y. Nakashima, Clays Clay Miner. 50, 1 (2002) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Osamu Inomoto
    • 1
    • 2
  • Stefan C. Müller
    • 1
  • Ryo Kobayashi
    • 3
  • Marcus J. B. Hauser
    • 1
    • 4
  1. 1.Institut für Physik, Otto-von-Guericke Universität MagdeburgMagdeburgGermany
  2. 2.Hyogo University of Teacher EducationKato City, HyogoJapan
  3. 3.Department of Mathematical and Life SciencesHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Institut für Biometrie und Medizinische Informatik, Otto-von-Guericke Universität MagdeburgMagdeburgGermany

Personalised recommendations