The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 73–83 | Cite as

DEM/FEM simulation for impact response of binary granular target and projectile

  • Shinnosuke Takeda
  • Kinya Ogawa
  • Kenichi Tanigaki
  • Keitaro Horikawa
  • Hidetoshi Kobayashi
Regular Article
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates


Three-dimensional dynamic discrete element method (DEM) and finite element method (FEM) simulation using LS-DYNA were, respectively, applied to the randomly distributed binary granular material and to the cylindrical projectiles in order to clarify the effect of size distribution of target particles on the dynamic behaviour of low density granular material. It was found that the peak resistance force of projectile during penetration depends on the packing density of the granular materials and on the impact velocity of projectile. The change of resistance force was well understood in connection with the propagation and the reflection of stress wave in projectile. The variety of particle size almost did not affect the resistance force of projectile. Densified region in granular material was generated ahead of projectile after impact. The densified region propagated in the depth direction and its propagation speed depended on the packing density of target granular material and impact velocity of projectile. That is, projectile impact behaviours of granular materials can be uniformly handled by impact velocity and packing density of the granular material, not depending on the variety of the particle size.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Allen, E.B. Mayfield, H.L. Morrison, J. Appl. Phys. 28, 370 (1957) ADSCrossRefGoogle Scholar
  2. 2.
    M.E. Backman, W. Goldsmith, Int. J. Eng. Sci. 16, 1 (1978) CrossRefGoogle Scholar
  3. 3.
    A.F. Savvateev, A.V. Budin, V.A. Kolikov, P.G. Rutberg, Int. J. Impact Eng. 26, 1 (2001) CrossRefGoogle Scholar
  4. 4.
    B. Hermalyn, P.H. Schultz, Icarus 216, 269 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    V.G. Bazhenov, A.M. Bragov, V.L. Kotov, J. Appl. Mech. Tech. Phys. 50, 1011 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    A. Van Vooren, J. Borg, H. Sandusky, J. Felts, Procedia Eng. 58, 601 (2013) CrossRefGoogle Scholar
  7. 7.
    J.P. Borg, M.P. Morrissey, C.A. Perich, T.J. Vogler, L.C. Chhabildas, Int. J. Impact Eng. 51, 23 (2013) CrossRefGoogle Scholar
  8. 8.
    A.H. Clark, A.J. Petersen, L. Kondic, R.P. Behringer, Phys. Rev. Lett. 114, 1 (2015) CrossRefGoogle Scholar
  9. 9.
    K.N. Nordstrom, E. Lim, M. Harrington, W. Losert, Phys. Rev. Lett. 112, 1 (2014) CrossRefGoogle Scholar
  10. 10.
    J.C. Ruiz-Suárez, Rep. Prog. Phys. 76, 66601 (2013) CrossRefGoogle Scholar
  11. 11.
    P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979) CrossRefGoogle Scholar
  12. 12.
    K. Wada, H. Senshu, T. Matsui, Icarus 180, 528 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    S.K. Dwivedi, R.D. Teeter, C.W. Felice, Y.M. Gupta, J. Appl. Phys. 104, 83502 (2008) CrossRefGoogle Scholar
  14. 14.
    J.P. Borg, T.J. Vogler, Int. J. Impact Eng. 35, 1435 (2008) CrossRefGoogle Scholar
  15. 15.
    M.A. Faraone, J.H. Chung, M.T. Davidson, Discrete element analysis of idealized granular geometric packings subjected to gravity, in 10th European LS-DYNA Conference 2015, Würzburg, Germany (2015) Google Scholar
  16. 16.
    Z. Han, H. Teng, J. Wang, Computer generation of sphere packing for discrete element analysis in LS-DYNA, in 12th International LS-DYNA® Users Conference (2012), pp. 1–4 Google Scholar
  17. 17.
    S. Yamada, J. Kanno, M. Miyauchi, Inf. Media Technol. 6, 493 (2011) Google Scholar
  18. 18.
    E. Oñate, J. Rojek, Comput. Methods Appl. Mech. Eng. 193, 3087 (2004) CrossRefGoogle Scholar
  19. 19.
    N. Karajan, Z. Han, H. Teng, J. Wang, Interaction possibilities of bonded and loose particles in LS-DYNA, in 9th European LS-DYNA Conference (2013), pp. 1–27 Google Scholar
  20. 20.
    G.D. Scott, D.M. Kilgour, J. Phys. D.: Appl. Phys. 2, 863 (1969) ADSCrossRefGoogle Scholar
  21. 21.
    K. Ogawa, S. Takeda, H. Kobayashi, Mech. Eng. J. 2, 14 (2015) CrossRefGoogle Scholar
  22. 22.
    K. Ogawa, S. Takeda, H. Kobayashi, K. Tanigaki, EPJ Web Conf. 94, 4040 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Engineering Science, Osaka UniversityToyonaka, OsakaJapan
  2. 2.Institute of Space DynamicsUkyo-KU, KyotoJapan

Personalised recommendations