Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 1–2, pp 155–166 | Cite as

A highly effective energy mitigation system combining carbon nanotube and buckyballs

  • Dayong Hu
  • Jianxing Hu
  • Hanlin Jiang
  • Jun Xu
Regular Article
  • 47 Downloads
Part of the following topical collections:
  1. Advances in the Characterization, Modeling and Simulation of Materials Subjected to High Strain Rates

Abstract

By combining a carbon nanotube with buckyballs, a novel energy dissipation system is investigated for impact protection based on molecular dynamics (MD) simulations. To explore the energy mitigation mechanism of the carbon nanotube with buckyballs system (C60-CNT), four types of C60-CNT systems are considered. Computational results indicate that the deformation of buckyballs and the interaction between buckyballs and carbon nanotube play a critical role for the energy mitigation of C60-CNT system. And results also show that the energy dissipation efficiency of C60-CNT system is higher than water-CNT system, and more than 50% of impact energy can be mitigated. Further, parametric studies are conducted by varying governing factors, including length and diameter of the carbon nanotube, the number of the buckyballs and impacting energy. Results may help to understand the underlying mechanism of C60-CNT system for impact protection, and explore the promising candidates of non-liquid energy mitigation system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X.M. Qiu, T.X. Yu, Appl. Mech. Rev. 65, 024001 (2012) ADSGoogle Scholar
  2. 2.
    G.Y. Lu, Z.J. Han, J.P. Lei, S.Y. Zhang, Thin-Walled Struct. 47, 1557 (2009) CrossRefGoogle Scholar
  3. 3.
    S.H. Chen, K.C. Chan, F.F. Wu, L. Xia, Sci. Rep. 5, 10302 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    X. Kong, Y. Qiao, Appl. Phys. Lett. 86, 151919 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    A. Han, Y. Qiao, Langmuir 23, 11396 (2007) CrossRefGoogle Scholar
  6. 6.
    X. Chen, G. Cao, A. Han, V.K. Punyamurtula, L. Liu, P.J. Culligan, T. Kim, Y. Qiao, Nano Lett. 8, 2988 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Qiao, L. Liu, X. Chen, Nano Lett. 9, 984 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    J. Xu, Y. Li, Y. Xiang, X. Chen, PLoS ONE 8, e64697 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    J. Xu, Y. Li, Y. Xiang, X. Chen, Nanoscale Res. Lett. 8, 1 (2013) CrossRefGoogle Scholar
  10. 10.
    J. Xu, Y. Sun, B. Wang, Y. Li, Y. Xiang, X. Chen, Mech. Res. Commun. 49, 8 (2013) CrossRefGoogle Scholar
  11. 11.
    Y. Sun, Z. Guo, J. Xu, X. Xu, C. Liu, Y. Li, Mater. Des. 66, 545 (2015) CrossRefGoogle Scholar
  12. 12.
    W. Lu, Novel protection mechanism of blast and impact waves by using nanoporous materials (Springer International Publishing, 2016) Google Scholar
  13. 13.
    A. Han, V.K. Punyamurthula, W. Lu, Y. Qiao, J. Appl. Phys. 103, 084318 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    L. Liu, X. Chen, W. Lu, A. Han, Y. Qiao, Phys. Rev. Lett. 102, 184501 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    B.X. Xu, Y. Qiao, X. Chen, J. Mech. Phys. Solids 62, 194 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    D. Hu, H. Jiang, K. Meng, J. Xu, W. Lu, Phys. Chem. Chem. Phys. 18, 7395 (2016) CrossRefGoogle Scholar
  17. 17.
    G. Cao, Y. Qiao, Q. Zhou, X. Chen, Mol. Simul. 34, 1267 (2008) CrossRefGoogle Scholar
  18. 18.
    H. Liu, G. Cao, J. Chem. Phys. 139, 114701 (2013) ADSCrossRefGoogle Scholar
  19. 19.
    L. Liu, Y. Qiao, X. Chen, Appl. Phys. Lett. 92, 101927 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    L. Liu, J. Zhao, P.J. Culligan, Y. Qiao, X. Chen, Langmuir 25, 11862 (2009) CrossRefGoogle Scholar
  21. 21.
    L. Liu, J.B. Zhao, C.Y. Yin, P.J. Culligan, X. Chen, Phys. Chem. Chem. Phys. 11, 6520 (2009) CrossRefGoogle Scholar
  22. 22.
    H. Chen, L. Zhang, M.D. Becton, H. Nie, J. Chen, X. Wang, Phys. Chem. Chem. Phys. 17, 17311 (2015) CrossRefGoogle Scholar
  23. 23.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001) ADSCrossRefGoogle Scholar
  25. 25.
    G. Lu, T.X. Yu, Energy absorption of structures and materials (Woodhead Publishing, Cambridge, 2003) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dayong Hu
    • 1
    • 2
    • 3
  • Jianxing Hu
    • 2
    • 4
  • Hanlin Jiang
    • 1
    • 2
    • 3
  • Jun Xu
    • 2
    • 4
    • 5
  1. 1.Department of Aircraft Airworthiness EngineeringSchool of Transportation Science and Engineering, Beihang UniversityBeijingP.R. China
  2. 2.Advanced Vehicle Research Center (AVRC), Beihang UniversityBeijingP.R. China
  3. 3.Aircraft/Engine Integrated System Safety Beijing Key LaboratoryBeijingP.R. China
  4. 4.Department of Automotive EngineeringSchool of Transportation Science and Engineering, Beihang UniversityBeijingP.R. China
  5. 5.Beijing Key Laboratory for High-efficient Power Transmission and System Control of New Energy Resource Vehicle, Beihang UniversityBeijingP.R. China

Personalised recommendations