Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 16–18, pp 3411–3425 | Cite as

Existence results of fractional differential equations with Riesz–Caputo derivative

  • Fulai Chen
  • Dumitru Baleanu
  • Guo-Cheng Wu
Regular Article
  • 10 Downloads
Part of the following topical collections:
  1. Fractional Dynamical Systems - Recent Trends in Theory and Applications

Abstract

This paper is concerned with a class of boundary value problems for fractional differential equations with the Riesz–Caputo derivative, which holds two-sided nonlocal effects. By means of a new fractional Gronwall inequalities and some fixed point theorems, we obtained some existence results of solutions. Three examples are given to illustrate the results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999) Google Scholar
  2. 2.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, The Netherlands, 2006) Google Scholar
  3. 3.
    Y. Zhou, F. Jiao, J. Li, Nonlinear Anal. 71, 3249 (2009) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Y. Zhou, Fract. Calculus Appl. Anal. 12, 195 (2009) MathSciNetGoogle Scholar
  5. 5.
    F. Chen, J.J. Nieto, Y. Zhou, Nonlinear Anal. 13, 287 (2012) CrossRefGoogle Scholar
  6. 6.
    F. Chen, Y. Zhou, Fixed Point Theory 15, 43 (2014) ADSMathSciNetGoogle Scholar
  7. 7.
    X. Zhou, F. Yang, W. Jiang, Appl. Math. Comput. 257, 295 (2015) MathSciNetGoogle Scholar
  8. 8.
    F. Xu, Bull. Malays. Math. Sci. Soc. 39, 571 (2016) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, J. Comput. Anal. Appl. 21, 661 (2016) MathSciNetGoogle Scholar
  10. 10.
    Y. Li, Y. Chen, I. Podlubny, Comput. Math. Appl. 59, 1810 (2010) MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Commun. Nonlinear Sci. Numer. Simulat. 19, 2951 (2014). ADSCrossRefGoogle Scholar
  12. 12.
    J. Wang, X. Li, Mediterr. J. Math. 13, 625 (2016) MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Wang, X. Li, Appl. Math. Comput. 258, 72 (2015) MathSciNetGoogle Scholar
  14. 14.
    O.P. Agrawal, J. Phys. A 40, 6287 (2007) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    G.S.F.Frederico, D.F.M. Torres, Appl. Math. Comput. 217, 1023 (2010) MathSciNetGoogle Scholar
  16. 16.
    R. Almeida, Appl. Math. Lett. 25, 142 (2012) MathSciNetCrossRefGoogle Scholar
  17. 17.
    G. Wu, D. Baleanu, Z. Deng, S. Zeng, Physica A 438, 335 (2015) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200 (2010) MathSciNetCrossRefGoogle Scholar
  19. 19.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach, New York, 1993) Google Scholar
  20. 20.
    H. Ya, J. Gao, Y. Ding, J. Math. Anal. Appl. 328, 1075 (2007) MathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Granas, R.B. Guenther, J.W. Lee, J. Math. Pures Appl. 70, 153 (1991) MathSciNetGoogle Scholar
  22. 22.
    J.K. Hale, Theory of function differential equations (Springer-Verlag, New York, 1977) Google Scholar
  23. 23.
    J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equation in several variables (Academic Press, New York, 1970) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Finance, Xiangnan UniversityChenzhouP.R. China
  2. 2.Department of Mathematics and Computer SciencesCankaya UniversityBalgat, AnkaraTurkey
  3. 3.Data Recovery Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal UniversityNeijiangP.R. China
  4. 4.Institute of Applied Nonlinear Science, College of Mathematics and Information Science, Neijiang Normal UniversityNeijiangP.R. China

Personalised recommendations