Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 16–18, pp 3567–3575 | Cite as

A new fractional derivative involving the normalized sinc function without singular kernel

  • Xiao-Jun YangEmail author
  • Feng Gao
  • J. A. Tenreiro Machado
  • Dumitru Baleanu
Regular Article
Part of the following topical collections:
  1. Fractional Dynamical Systems - Recent Trends in Theory and Applications

Abstract

In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Caputo, Geophys. J. Int. 13, 529 (1967) ADSCrossRefGoogle Scholar
  2. 2.
    M. Caputo, M.A. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015) Google Scholar
  3. 3.
    X.J. Yang, Therm. Sci. 21, 1161 (2017) CrossRefGoogle Scholar
  4. 4.
    X.J. Yang, Roman. Rep. Phys. 69, 118 (2017) Google Scholar
  5. 5.
    X.J. Yang, J.A. Machado, D. Baleanu, Roman. Rep. Phys. 69, 115 (2017) Google Scholar
  6. 6.
    H. Sun, X. Hao, Y. Zhang, D. Baleanu, Physica A 468, 590 (2017) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016) CrossRefGoogle Scholar
  8. 8.
    F. Mainardi, Chaos Solitons Fractals 7, 1461 (1996) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Scalas, R. Gorenflo, F. Mainardi, M. Raberto, Fractals 11, 281 (2003) MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Hristov, Therm. Sci. 20, 757 (2016) CrossRefGoogle Scholar
  12. 12.
    N.A. Shah, I. Khan, Eur. Phys. J. C 761 (2016) Google Scholar
  13. 13.
    S. Akhtar, Eur. Phys. J. Plus 131, 401 (2016) CrossRefGoogle Scholar
  14. 14.
    J.F. Gómez-Aguilar, Chaos Solitons Fractals 95, 179 (2017) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    O.J.J. Algahtani, Chaos Solitons Fractals 89, 552 (2016) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.N. Kochubei, Integr. Equ. Oper. Theory 71, 583 (2011) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Luchko, M. Yamamoto, Fract Calc Appl Anal 19, 676 (2016) MathSciNetCrossRefGoogle Scholar
  18. 18.
    B.J. West, Fractional calculus view of complexity: tomorrow’s science (CRC Press, Boca Raton, 2015) Google Scholar
  19. 19.
    J. Sabatier, O.P. Agrawal, J.T. Machado, Advances in fractional calculus (Springer, 2007) Google Scholar
  20. 20.
    X.J. Yang, Therm. Sci. 20, 753 (2016) CrossRefGoogle Scholar
  21. 21.
    R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82, 3563 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    F. Mainardi, G. Pagnini, R. Gorenflo, Appl. Math. Comput. 187, 295 (2007) MathSciNetGoogle Scholar
  23. 23.
    C.M. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007) ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R. Hilfer, J. Phys. Chem. B 104, 3914 (2000) CrossRefGoogle Scholar
  25. 25.
    E. Sousa, C. Li, Appl. Numer. Math. 90, 22 (2015) MathSciNetCrossRefGoogle Scholar
  26. 26.
    T.F. Nonnenmacher, R. Metzler, Fractals 3, 557 (1995) MathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Li, G. Peng, Chaos Solitons Fractals 22, 443 (2004) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    T. Jankowski, Appl. Math. Comput. 219, 7772 (2013) MathSciNetGoogle Scholar
  29. 29.
    Q. Huang, R. Zhdanov, Physica A 409, 110 (2014) ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    X.J. Yang, D. Baleanu, H.M. Srivastava, Local fractional integral transforms and their applications (Academic Press, 2015) Google Scholar
  31. 31.
    E.T. Whittaker, Proc. R. Soc. Edinb. 35, 181 (1915) CrossRefGoogle Scholar
  32. 32.
    R. Bracewell, in The Fourier transform and its applications (McGraw-Hill, New York, 1999), p. 62 Google Scholar
  33. 33.
    L. Debnath, D. Bhatta, Integral transforms and their applications (CRC Press, 2014) Google Scholar
  34. 34.
    F.B.M. Belgacem, A.A. Karaballi, Int. J. Stoch. Anal. 1, 91083 (2006) Google Scholar
  35. 35.
    X.J. Yang, Appl. Math. Lett. 64, 193 (2017) MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and TechnologyXuzhouP.R. China
  2. 2.School of Mechanics and Civil Engineering, China University of Mining and TechnologyXuzhouP.R. China
  3. 3.Institute of Engineering, Polytechnic of Porto, Department of Electrical EngineeringPortoPortugal
  4. 4.Department of MathematicsCankya UniversityBalgatTurkey
  5. 5.Institute of Space SciencesBucharestRomania

Personalised recommendations