Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 16–18, pp 3369–3390 | Cite as

On multi-term fractional differential equations with multi-point boundary conditions

  • Bashir Ahmad
  • Najla Alghamdi
  • Ahmed Alsaedi
  • Sotiris K. Ntouyas
Regular Article
  • 21 Downloads
Part of the following topical collections:
  1. Fractional Dynamical Systems - Recent Trends in Theory and Applications

Abstract

In this paper, we discuss the existence and uniqueness of solutions for a new class of multi-point boundary value problems of multi-term fractional differential equations by using standard fixed point theorems. We also demonstrate the application of the obtained results with the aid of examples. The paper concludes with the study of multi-term fractional integro-differential equations supplemented with multi-point boundary conditions. Our results are new and contribute significantly to the existing literature on the topic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Diethelm, in The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, Lecture notes in mathematics (Springer-Verlag, Berlin, 2010), Vol. 2004 Google Scholar
  2. 2.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, in Theory and applications of fractional differential equations, North-Holland mathematics studies (Elsevier Science B.V., Amsterdam, 2006), Vol. 204 Google Scholar
  3. 3.
    K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley, New York, 1993) Google Scholar
  4. 4.
    I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999) Google Scholar
  5. 5.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives, theory and applications (Gordon and Breach, Yverdon, 1993) Google Scholar
  6. 6.
    J.R. Graef, L. Kong, Q. Kong, Fract. Calc. Differ. Calc. 2, 554 (2011) Google Scholar
  7. 7.
    Z.B. Bai, W. Sun, Comput. Math. Appl. 63, 1369 (2012) MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Ahmad, M.M. Matar, O.M. El-Salmy, Int. J. Anal. Appl. 15, 86 (2017) Google Scholar
  9. 9.
    S.K. Ntouyas, J. Tariboon, W. Sudsutad, Meditter. J. Math. 13, 939 (2016) CrossRefGoogle Scholar
  10. 10.
    B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities (Springer, Cham, 2017) Google Scholar
  11. 11.
    R.P. Agarwal, B. Ahmad, A. Alsaedi, Bound. Value Probl. 2017, 173 (2017) CrossRefGoogle Scholar
  12. 12.
    P.J. Torvik, R.L. Bagley, J. Appl. Mech. 51, 294 (1984) ADSCrossRefGoogle Scholar
  13. 13.
    F. Mainardi, Some basic problems in continuum and statistical mechanics, in Fractals and fractional calculus in continuum mechanics, edited by A. Carpinteri, F. Mainardi (Springer, Berlin, 1997), p. 291 Google Scholar
  14. 14.
    C.-G. Li, M. Kostic, M. Li, Kragujevac J. Math. 38, 51 (2014) MathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Ahmad, S.K. Ntouyas, Miskolc Math. Notes 15, 265 (2014) MathSciNetGoogle Scholar
  16. 16.
    Y. Liu, Math. Nachr. 289, 1526 (2016) MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. Stanek, Fract. Calc. Appl. Anal. 20, 662 (2017) MathSciNetCrossRefGoogle Scholar
  18. 18.
    M.A. Krasnoselskii, Usp. Mat. Nauk 10, 123 (1955) Google Scholar
  19. 19.
    A. Granas, J. Dugundji, Fixed point theory (Springer-Verlag, New York, 2003) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bashir Ahmad
    • 1
  • Najla Alghamdi
    • 1
    • 2
  • Ahmed Alsaedi
    • 1
  • Sotiris K. Ntouyas
    • 1
    • 3
  1. 1.Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of MathematicsFaculty of Science, University of JeddahJeddahSaudi Arabia
  3. 3.Department of MathematicsUniversity of IoanninaIoanninaGreece

Personalised recommendations