Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 5–6, pp 563–573 | Cite as

The effect of long-range interactions on the dynamics and statistics of 1D Hamiltonian lattices with on-site potential

  • H. Christodoulidi
  • A. Bountis
  • L. Drossos
Regular Article
Part of the following topical collections:
  1. Nonlinear Phenomena in Physics: New Techniques and Applications

Abstract

We examine the role of long-range interactions on the dynamical and statistical properties of two 1D lattices with on-site potentials that are known to support discrete breathers: the Klein–Gordon (KG) lattice which includes linear dispersion and the Gorbach–Flach (GF) lattice, which shares the same on-site potential but its dispersion is purely nonlinear. In both models under the implementation of long-range interactions (LRI), we find that single-site excitations lead to special low-dimensional solutions, which are well described by the undamped Duffing oscillator. For random initial conditions, we observe that the maximal Lyapunov exponent λ scales as N−0.12 in the KG model and as N−0.27 in the GF with LRI, suggesting in that case an approach to integrable behavior towards the thermodynamic limit. Furthermore, under LRI, their non-Gaussian momentum distributions are distinctly different from those of the FPU model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    L.J.L. Cirto, V. Assis, C. Tsallis, Physica A 393, 286 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    H. Christodoulidi, C. Tsallis, T. Bountis, Europhys. Lett. 108, 40006 (2014) ADSCrossRefGoogle Scholar
  5. 5.
    H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, J. Stat. Mech. 2016, 123206 (2016) CrossRefGoogle Scholar
  6. 6.
    G. Miloshevich, T. Dauxois, R. Khomeriki, S. Ruffo, Europhys. Lett. 104, 17011 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, Phys. Rev. E 91, 032927 (2015) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, J. Phys. A: Math. Theor. 50, 12LT02 (2017) CrossRefGoogle Scholar
  9. 9.
    S. Gupta, S. Ruffo, Int. J. Mod. Phys. A 32, 1741018 (2017) ADSCrossRefGoogle Scholar
  10. 10.
    S. Iubini, P. Di Cintio, S. Lepri, R. Livi, L. Casetti, Phys. Rev. E 97, 032102 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    D. Bagchi, C. Tsallis, Phys. Rev. E 93, 062213 (2016) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Bagchi, Phys. Rev. E 95, 032102 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    D. Bagchi, Phys. Rev. E 96, 042121 (2017) ADSCrossRefGoogle Scholar
  14. 14.
    D. Bagchi, C. Tsallis, Physica A 491, 869 (2018) ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    E. Fermi, J. Pasta, S. Ulam, Los Alamos, Report No. LA-1940, 1955 Google Scholar
  16. 16.
    A.V. Gorbach, S. Flach, Phys. Rev. E 72, 056607 (2005) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.V. Ivanchenko, O.I. Kanakov, V.D. Shalfeev, S. Flach, Physica D 198, 120 (2004) ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    P. Maniadis, T. Bountis, Phys. Rev. E 73, 046211 (2006) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    R.S. MacKay, S. Aubry, Nonlinearity 7, 1623 (1994) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Flach, Phys. Rev. E 51, 3579 (1995) ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Bergamin, T. Bountis, C. Jung, J. Phys. A: Math. Gen. 33, 8059 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Bergamin, T. Bountis, M.N. Vrahatis, Nonlinearity 15, 1603 (2002) ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Flach, Phys. Rev. E 58, R4116 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    L. Casetti, R. Livi, M. Pettini, Phys. Rev. Lett. 74, 375 (1995) ADSCrossRefGoogle Scholar
  25. 25.
    C. Tsallis, Stat. Phys. 52, 479 (1988) First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro ADSCrossRefGoogle Scholar
  26. 26.
    M. Gell-Mann, C. Tsallis (Eds.), Nonextensive Entropy – Interdisciplinary Applications (Oxford University Press, New York, 2004) Google Scholar
  27. 27.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009) Google Scholar
  28. 28.
    C. Tsallis, Contemp. Phys. 55, 179 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center for Astronomy and Applied Mathematics, Academy of AthensAthensGreece
  2. 2.Department of MathematicsNazarbayev UniversityAstanaRepublic of Kazakhstan
  3. 3.High Performance Computing Systems and Distance Learning Lab, Technological Educational Institute of Western GreecePatrasGreece

Personalised recommendations