Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 15, pp 3185–3197 | Cite as

Challenges in the analysis of complex systems: introduction and overview

  • Harold M. Hastings
  • Jörn Davidsen
  • Henry Leung
Editorial
  • 516 Downloads
Part of the following topical collections:
  1. Challenges in the Analysis of Complex Systems: Prediction, Causality and Communication

Abstract

One of the main challenges of modern physics is to provide a systematic understanding of systems far from equilibrium exhibiting emergent behavior. Prominent examples of such complex systems include, but are not limited to the cardiac electrical system, the brain, the power grid, social systems, material failure and earthquakes, and the climate system. Due to the technological advances over the last decade, the amount of observations and data available to characterize complex systems and their dynamics, as well as the capability to process that data, has increased substantially. The present issue discusses a cross section of the current research on complex systems, with a focus on novel experimental and data-driven approaches to complex systems that provide the necessary platform to model the behavior of such systems.

References

  1. 1.
    P.W. Anderson, Science 177, 393 (1972) ADSCrossRefGoogle Scholar
  2. 2.
    C.H. Scholz, Nature 391, 37 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    D.L. Turcotte, Fractals and chaos in geology and geophysics (Cambridge University Press, Cambridge, UK, 1997) Google Scholar
  4. 4.
    O. Peters, C. Hertlein, K. Christensen, Phys. Rev. Lett. 88, 018701 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 174, 157 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    A. Corral, A. Osso, J.E. Llebot, Nat. Phys. 6, 693 (2010) CrossRefGoogle Scholar
  7. 7.
    E.A. Martin, M. Paczuski, J. Davidsen, Europhys. Lett. 102, 48003 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    L. Glass, M.C. Mackey, From clocks to chaos: the rhythms of life (Princeton University Press, Princeton, NJ, USA, 1988) Google Scholar
  9. 9.
    A. Garfinkel, P.S. Chen, D.O. Walter, H.S. Karagueuzian, B. Kogan, S.J. Evans, M. Karpoukhin, C. Hwang, T. Uchida, M. Gotoh, O. Nwasokwa, J. Clin. Investig. 99, 305 (1997) CrossRefGoogle Scholar
  10. 10.
    A.T. Winfree, The geometry of biological time (Springer, New York, 2001) Google Scholar
  11. 11.
    L. Glass, Chaos 25, 097603 (2015) ADSCrossRefGoogle Scholar
  12. 12.
    E.M. Cherry, F.H. Fenton, T. Krogh-Madsen, S. Luther, U. Parlitz, Chaos 27, 093701 (2017) ADSCrossRefGoogle Scholar
  13. 13.
    S. Kauffman, The origins of order: self organization and selection in evolution, in Spin glasses and biology, edited by D.L. Stern (World Scientific, Singapore, 1993) Google Scholar
  14. 14.
    W.L. Ellsworth, Science 341, 1225942 (2013) CrossRefGoogle Scholar
  15. 15.
    X. Bao, D.W. Eaton, Science 2016, aag2583 (2016) Google Scholar
  16. 16.
    K. Hlaváèková-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Phys. Rep. 441, 1 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    M. Timme, J. Casadiego, J. Phys. A: Math. Theor. 47, 343001 (2014) CrossRefGoogle Scholar
  18. 18.
    L. Barnett, A.B. Barrett, A.K. Seth, Phys. Rev. Lett. 103, 238701 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    R.E. Kalman, J. Basic Eng. 82, 35 (1960) CrossRefGoogle Scholar
  20. 20.
    G. Evensen, Data assimilation: the ensemble Kalman filter (Springer, Heidelberg, 2009) Google Scholar
  21. 21.
    E.A. Martin, J. Hlinka, A. Meinke, F. Dechterenko, J. Tintera, I. Oliver, J. Davidsen, Sci. Rep. 7, 7062 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    J. Runge, R.V. Donner, J. Kurths, Phys. Rev. E 91, 052909 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    F. Takens, in Detecting strange attractors in turbulence, Lecture notes in mathematics (Springer-Verlag, Berlin, 1981), Vol. 898 Google Scholar
  24. 24.
    H. Kantz, T. Schreiber, Nonlinear times series analysis (Cambridge University Press, Cambridge, UK, 2004) Google Scholar
  25. 25.
    B. Schelter, M. Winterhalder, J. Timmer, Handbook of time series analysis: recent theoretical developments and applications (John Wiley and Sons, New York, 2006) Google Scholar
  26. 26.
    G. Sugihara, R. May, H. Ye, C.H. Hsieh, E. Deyle, M. Fogarty, S. Munch, Science 338, 496 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    D. Kugiumtzis, Phys. Rev. E 87, 062918 (2013) ADSCrossRefGoogle Scholar
  28. 28.
    H. Ye, R.J. Beamish, S.M. Glaser, S.C. Grant, C.H. Hsieh, L.J. Richards, J.T. Schnute, G. Sugihara, Proc. Natl. Acad. Sci. USA 112, E1569 (2015) CrossRefGoogle Scholar
  29. 29.
    D.L. DeAngelis, S. Yurek, Proc. Natl. Acad. Sci. USA 112, 3856 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    F. Hamilton, T. Berry, T. Sauer, Phys. Rev. X 6, 011021 (2016) Google Scholar
  31. 31.
    F. Hamilton, T. Berry, T. Sauer, Eur. Phys. J. Special Topics 226, 3239 (2017) Google Scholar
  32. 32.
    D. Marbach, J.C. Costello, R. Küffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R. Allison, M. Kellis, J.J. Collins, G. Stolovitzky, Dream5 Consortium, Nat. Methods 9, 796 (2012) CrossRefGoogle Scholar
  33. 33.
    D. Battaglia, I. Guyon, V. Lemaire, J. Orlandi, B. Ray, J. Soriano, Neural connectomics challenge (Springer International Publishing, Cham, 2017) Google Scholar
  34. 34.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Riedl, N. Marwan, J. Kurths, Eur. Phys. J. Special Topics 226, 3273 (2017)Google Scholar
  36. 36.
    I. Malvestio, T. Kreuz, R.G. Andrzejak, Phys. Rev. E 96, 022203 (2017) ADSCrossRefGoogle Scholar
  37. 37.
    T. Berry, F. Hamilton, N. Peixoto, T. Sauer, J. Neurosci. Methods 209, 388 (2012) CrossRefGoogle Scholar
  38. 38.
    D. Marsan, O. Lenglin, Science 319, 1076 (2008) ADSCrossRefGoogle Scholar
  39. 39.
    I. Zaliapin, A. Gabrielov, V. Keilis-Borok, H. Wong, Phys. Rev. Lett. 101, 018501 (2008) ADSCrossRefGoogle Scholar
  40. 40.
    J. Moradpour, S. Hainzl, J. Davidsen, J. Geophys. Res. 119, 5518 (2014) ADSCrossRefGoogle Scholar
  41. 41.
    S. Ito, M.E. Hansen, R. Heiland, A. Lumsdaine, A.M. Litke, J.M. Beggs, PLoS ONE 6, e27431 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    J.G. Orlandi, O. Stetter, J. Soriano, T. Geisel, D. Battaglia, PLoS ONE 9, e98842 (2014) ADSCrossRefGoogle Scholar
  43. 43.
    J. Baró, J. Davidsen, Eur. Phys. J. Special Topics 226, 3211 (2017)Google Scholar
  44. 44.
    B.D. Thompson, R.P. Young, D.A. Lockner, J. Geophys. Res.: Solid Earth 114, 2156 (2009) Google Scholar
  45. 45.
    J. Davidsen, G. Kwiatek, E.M. Charalampidou, T. Goebel, S. Stanchits, M. Rück, G. Dresen, Phys. Rev. Lett. 119, 068501068501 (2017) ADSCrossRefGoogle Scholar
  46. 46.
    E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009) CrossRefGoogle Scholar
  47. 47.
    M.E.J. Newman, Networks: an introduction (Oxford University Press, Oxford, UK, 2010) Google Scholar
  48. 48.
    A.P. Belousov, The periodically acting chemical reaction and its mechanism, unpublished (1951). English translation in Oscillations and traveling waves in chemical systems, edited by R. Field, M. Burger (Wiley, New York, 1985), pp. 605–613 Google Scholar
  49. 49.
    A.M. Zhabotinsky, Biofizika 9, 306 (1964) Google Scholar
  50. 50.
    R.J. Field, E. Koros, R.M. Noyes, J. Am. Chem. Soc. 94, 8649 (1972) CrossRefGoogle Scholar
  51. 51.
    R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974) ADSCrossRefGoogle Scholar
  52. 52.
    A.S. Mikhailov, G. Ertl, The Belousov–Zhabotinsky reaction, in Chemical complexity, edited by A.S. Mikhailov, G. Ertl (Springer, Cham, 2017), pp. 89–103 Google Scholar
  53. 53.
    K. Showalter, I.R. Epstein, Chaos 25, 097613 (2015) ADSCrossRefGoogle Scholar
  54. 54.
    C. Beta, K. Kruse, Annu. Rev. Condens. Matter Phys. 8, 239 (2017) ADSCrossRefGoogle Scholar
  55. 55.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, UK, 2001) Google Scholar
  56. 56.
    A. Goldbeter, Chaos 27, 104612 (2017) ADSCrossRefGoogle Scholar
  57. 57.
    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015) ADSCrossRefGoogle Scholar
  58. 58.
    H.W. Lau, J. Davidsen, Phys. Rev. E 94, 010204(R) (2016) ADSCrossRefGoogle Scholar
  59. 59.
    E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016) ADSCrossRefGoogle Scholar
  60. 60.
    J. Davidsen, Nat. Phys. (2017), doi: 10.1038/s41567-017-0014-7
  61. 61.
    H.M. Hastings, O.I. Hernandez, L. Jiang, B. Lai, L. Tensen, J. Yang, Dynamics of biomimetic electronic artificial neural networks, in International conference on applications in nonlinear dynamics, edited by V. In, P. Longhini, A. Palacios (Springer, Cham, 2016), pp. 195–207 Google Scholar
  62. 62.
    J.P. Keener, IEEE Trans. Syst. Man Cybern. 5, 1010 (1983) CrossRefGoogle Scholar
  63. 63.
    J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962) CrossRefGoogle Scholar
  64. 64.
    R. FitzHugh, Biophys. J. 1, 445 (1961) ADSCrossRefGoogle Scholar
  65. 65.
    E.M. Izhikevich, R. FitzHugh, Scholarpedia 1, 1349 (2006) ADSCrossRefGoogle Scholar
  66. 66.
    E.M.E. Arumugam, M.L. Spano, Chaos 25, 013107 (2015) ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    E. Steur, C. Murguia, R.H. Fey, H. Nijmeijer, Int. J. Bifurc. Chaos 26, 1650111 (2016) CrossRefGoogle Scholar
  68. 68.
    H. Ahmed, R. Ushirobira, D. Efimov, Eur. Phys. J. Special Topics 226, 3199 (2017)Google Scholar
  69. 69.
    Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International symposium on mathematical problems in theoretical physics, Lecture notes in physics, edited by H. Araki (Springer, Berlin-Heidelberg, 1975), Vol. 39, pp. 420–422 Google Scholar
  70. 70.
    S.H. Strogatz, Physica D 143, 1 (2000) ADSMathSciNetCrossRefGoogle Scholar
  71. 71.
    M. Bonnin, Eur. Phys. J. Special Topics 226, 3227 (2017) Google Scholar
  72. 72.
    C.W. Wu, L.O. Chua, Int. J. Bifurc. Chaos 3, 1619 (1993) CrossRefGoogle Scholar
  73. 73.
    T.L. Carroll, L.M. Pecora, Synchronizing chaotic circuits, in Nonlinear dynamics, Circuits, edited by T.L. Carroll, L.M. Pecora (World Scientific, Singapore, 1995), pp. 215–248 Google Scholar
  74. 74.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995) ADSCrossRefGoogle Scholar
  75. 75.
    C. Seneviratne, H. Leung, Eur. Phys. J. Special Topics 226, 3287 (2017) Google Scholar
  76. 76.
    M.E. Hellman, IEEE Commun. Mag. 40, 42 (2002) CrossRefGoogle Scholar
  77. 77.
    S.V. Kartalopoulos, IEEE Commun. Mag. 44, 146 (2006) CrossRefGoogle Scholar
  78. 78.
    Y.S. Shiu, S.Y. Chang, H.C. Wu, S.C. Huang, H.H. Chen, IEEE Wirel. Commun. 18, 66 (2011) CrossRefGoogle Scholar
  79. 79.
    A. Mukherjee, S.A.A. Fakoorian, J. Huang, A.L. Swindlehurst, IEEE Commun. Surv. Tutor. 16, 1550 (2014) CrossRefGoogle Scholar
  80. 80.
    R. van Nee, R. Prasad, OFDM for wireless multimedia communication (Artech House, Inc., Norwood, MA, USA, 2000) Google Scholar
  81. 81.
    F.J. Müller, A. Schuppert, Nature 478, E4 (2011) CrossRefGoogle Scholar
  82. 82.
    N.J. Cowan, E.J. Chastain, D.A. Vilhena, J.S. Freudenberg, C.T. Bergstrom, PLoS ONE 7, e38398 (2012) ADSCrossRefGoogle Scholar
  83. 83.
    Y.Y. Liu, J.J. Slotine, A.L. Barabási, Proc. Natl. Acad. Sci. USA 110, 2460 (2013) ADSMathSciNetCrossRefGoogle Scholar
  84. 84.
    M.T. Angulo, J.A. Moreno, G. Lippner, A.L. Barabási, Y.Y. Liu, J. R. Soc. Interface 14, 20160966 (2017) CrossRefGoogle Scholar
  85. 85.
    E.P. Wigner, Ann. Math. 62, 548 (1955) MathSciNetCrossRefGoogle Scholar
  86. 86.
    E.P. Wigner, Ann. Math. 67, 325 (1958) MathSciNetCrossRefGoogle Scholar
  87. 87.
    R.M. May, Nature 238, 413 (1972) ADSCrossRefGoogle Scholar
  88. 88.
    R.M. May, Stability and complexity in model ecosystems (Princeton University Press, Princeton, NJ, USA, 2001) Google Scholar
  89. 89.
    S. Allesina, S. Tang, Popul. Ecol. 57, 63 (2015) CrossRefGoogle Scholar
  90. 90.
    J.E. Cohen, C.M. Newman, J. Theor. Biol. 113, 153 (1985) CrossRefGoogle Scholar
  91. 91.
    S. Geman, Ann. Probab. 14, 1318 (1986) MathSciNetCrossRefGoogle Scholar
  92. 92.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013) CrossRefGoogle Scholar
  93. 93.
    P.J. Menck, J. Heitzig, J. Kurths, S.J. Schellnhuber, Nat. Commun. 5, 3969 (2014) CrossRefGoogle Scholar
  94. 94.
    V.A. Smith, T.E. Lockhart, M.L. Spano, Eur. Phys. J. Special Topics 226, 3315 (2017) Google Scholar
  95. 95.
    J.J. Collins, C.J. De Luca, Exp. Brain Res. 95, 308 (1993) CrossRefGoogle Scholar
  96. 96.
    J.R. Stirling, M.S. Zakynthinaki, Chaos 14, 96 (2004) ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    M.E. Tinetti, N. Engl. J. Med. 348, 42 (2003) CrossRefGoogle Scholar
  98. 98.
    CDC, Web-based Injury Statistics Query and Reporting System (WISQARS) (2015), http://www.cdc.gov/injury/wisqars/ (accessed 2016/27/10)
  99. 99.
    J. Bélair, L. Glass, U. an der Heiden, J. Milton, Chaos 5, 1 (1995) ADSCrossRefGoogle Scholar
  100. 100.
    A. Beuter, J. Bélair, C. Labrie, Bull. Math. Biol. 55, 525 (1993) Google Scholar
  101. 101.
    M.C. Mackey, J.G. Milton, Ann. N. Y. Acad. Sci. 504, 16 (1987) ADSCrossRefGoogle Scholar
  102. 102.
    F.L. Da Silva, W. Blanes, S.N. Kalitzin, J. Parra, P. Suffczynski, D.N. Velis, IEEE Trans. Biomed. Eng. 50, 540 (2003) CrossRefGoogle Scholar
  103. 103.
    F.L. Da Silva, W. Blanes, S.N. Kalitzin, J. Parra, P. Suffczynski, D.N. Velis, Epilepsia 44, 72 (2003) CrossRefGoogle Scholar
  104. 104.
    J.N. Weiss, A. Garfinkel, H.S. Karagueuzian, Z. Qu, P.S. Chen, Circulation 99, 2819 (1999) CrossRefGoogle Scholar
  105. 105.
    T. Cameron, J. Davidsen, Phys. Rev. E 86, 061908 (2012) ADSCrossRefGoogle Scholar
  106. 106.
    G. St-Yves, J. Davidsen, Phys. Rev. E 91, 032926 (2015) ADSCrossRefGoogle Scholar
  107. 107.
    S. Alonso, M. Bär, B. Echebarria, Rep. Prog. Phys. 79, 096601 (2016) ADSCrossRefGoogle Scholar
  108. 108.
    Cardiac Arrhythmia Suppression Trial (CAST) Investigators, N. Engl. J. Med. 321, 406 (1989) CrossRefGoogle Scholar
  109. 109.
    A.L. Waldo, A.J. Camm, P.L. Friedman, D.J. MacNeil, J.F. Pauls, B. Pitt, C.M. Pratt, P.J. Schwartz, E.P. Veltri, Lancet 348, 7 (1996) CrossRefGoogle Scholar
  110. 110.
    D.S. Echt, P.R. Liebson, L.B. Mitchell, R.W. Peters, D. Obias-Manno, A.H. Barker, D. Arensberg, A. Baker, L. Friedman, H.L. Greene, M.L. Huther, N. Engl. J. Med. 324, 781 (1991) CrossRefGoogle Scholar
  111. 111.
    C.M. Pratt, L.A. Moyé, Circulation 91, 245 (1995) CrossRefGoogle Scholar
  112. 112.
    D.M. Roden, Am. J. Cardiol. 78, 12 (1996) CrossRefGoogle Scholar
  113. 113.
    D.L. Packer, T.M. Munger, S.B. Johnson, K.T. Cragun, Pacing Clin. Electrophysiol. 20, 455 (1997) CrossRefGoogle Scholar
  114. 114.
    I. Uzelac, Y.C. Ji, D. Hornung, J. Schröder-Scheteling, S. Luther, R.A. Gray, E.M. Cherry, F.H. Fenton, Front. Physiol. 8, 819 (2017) CrossRefGoogle Scholar
  115. 115.
    S. Luther, F.H. Fenton, B.G. Kornreich, A. Squires, P. Bittihn, D. Hornung, M. Zabel, J. Flanders, A. Gladuli, L. Campoy, E.M. Cherry, Nature 475, 235 (2011) ADSCrossRefGoogle Scholar
  116. 116.
    D.R. Chialvo, Nat. Phys. 6, 744 (2010) CrossRefGoogle Scholar
  117. 117.
    A.P. Alivisatos, M. Chun, G.M. Church, R.J. Greenspan, M.L. Roukes, R. Yuste, Neuron 74, 970 (2012) CrossRefGoogle Scholar
  118. 118.
    J. Bardin, Nature 483, 394 (2012) ADSCrossRefGoogle Scholar
  119. 119.
    C. Bargmann, W. Newsome, A. Anderson, E. Brown, K. Deisseroth, J. Donoghue, P. MacLeish, E. Marder, R. Normann, J. Sanes, BRAIN 2025: a scientific vision. Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Working Group Report to the Advisory Committee to the Director, NIH. Available online at: http://www.nih.gov/science/brain/2025/ (US National Institutes of Health, 2014)
  120. 120.
    S.W. Oh, J.A. Harris, L. Ng, B. Winslow, N. Cain, S. Mihalas, Q. Wang, C. Lau, L. Kuan, A.M. Henry, M.T. Mortrud, Nature 508, 207 (2014) ADSCrossRefGoogle Scholar
  121. 121.
    H. Peng, E. Meijering, G.A. Ascoli, Neuroinformatics 13, 259 (2015) CrossRefGoogle Scholar
  122. 122.
    M.J. Lowe, K.E. Sakaie, E.B. Beall, V.D. Calhoun, D.A. Bridwell, M. Rubinov, S.M. Rao, J. Int. Neuropsychol. Soc. 22, 105 (2016) CrossRefGoogle Scholar
  123. 123.
    A. Haimovici, E. Tagliazucchi, P. Balenzuela, D.R. Chialvo, Phys. Rev. Lett. 110, 178101 (2013) ADSCrossRefGoogle Scholar
  124. 124.
    M.D. Greicius, B. Krasnow, A.L. Reiss, V. Menon, Proc. Natl. Acad. Sci. USA 100, 253 (2003) ADSCrossRefGoogle Scholar
  125. 125.
    A. Padmanabhan, C.J. Lynch, M. Schaer, V. Menon, Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2, 476 (2017) Google Scholar
  126. 126.
    A. Di Martino, C.G. Yan, Q. Li, E. Denio, F.X. Castellanos, K. Alaerts, J.S. Anderson, M. Assaf, S.Y. Bookheimer, M. Dapretto, B. Deen, Mol. Psychiatry 19, 659 (2014) CrossRefGoogle Scholar
  127. 127.
    C.L. Grady, A.B. Protzner, N. Kovacevic, S.C. Strother, B. Afshin-Pour, M. Wojtowicz, J.A. Anderson, N. Churchill, A.R. McIntosh, Cereb. Cortex 20, 1432 (2009) CrossRefGoogle Scholar
  128. 128.
    H. Wang, A.R. McIntosh, N. Kovacevic, M. Karachalios, A.B. Protzner, J. Cogn. Neurosci. 28, 971 (2016) CrossRefGoogle Scholar
  129. 129.
    A.B. Protzner, I.S. Hargreaves, J.A. Campbell, K. Myers-Stewart, S. van Hees, B.G. Goodyear, P. Sargious, P.M. Pexman, Cortex 75, 204 (2016) CrossRefGoogle Scholar
  130. 130.
    I.S. Hargreaves, P.M. Pexman, L. Zdrazilova, P. Sargious, Memory Cogn. 40, 1 (2012) CrossRefGoogle Scholar
  131. 131.
    M. Bilalić, R. Langner, M. Erb, W. Grodd, J. Exp. Psychol.: General 139, 728 (2010) CrossRefGoogle Scholar
  132. 132.
    A. Sizemore, C. Giusti, D.S. Bassett, J. Complex Netw. 5, 245 (2016) Google Scholar
  133. 133.
    A. Sizemore, C Giusti, R.F. Betzel, D.S. Bassett, arXiv:1608.03520 (2016)
  134. 134.
    M.W.Reimann, M. Nolte, M. Scolamiero, K. Turner, R. Perin, G. Chindemi, P. Dłotko, R. Levi, K. Hess, H. Markram, Front. Comput. Neurosci. 11, 48 (2017) CrossRefGoogle Scholar
  135. 135.
    D.S. Bassett, A.N. Khambhati, S.T. Grafton, Annu. Rev. Biomed. Eng. 19, 327 (2017), and references therein CrossRefGoogle Scholar
  136. 136.
    D.P. Rosin, D. Rontani, D.J. Gauthier, E. Schöll, Phys. Rev. Lett. 110, 104102 (2013) ADSCrossRefGoogle Scholar
  137. 137.
    S.A. Kauffman, J. Theor. Biol. 22, 437 (1969) CrossRefGoogle Scholar
  138. 138.
    L. Glass, S.A. Kauffman, J. Theor. Biol. 39, 103 (1973) CrossRefGoogle Scholar
  139. 139.
    D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, D.J. Gauthier, Phys. Rev. E 90, 030902 (2014) ADSCrossRefGoogle Scholar
  140. 140.
    O. D’Huys, J. Lohmann, N.D. Haynes, D.J. Gauthier, Chaos 26, 094810 (2016) ADSMathSciNetCrossRefGoogle Scholar
  141. 141.
    J. Lohmann, O. D’Huys, N.D. Haynes, E. Schöll, D.J. Gauthier, Phys. Rev. E 95, 022211 (2017) ADSCrossRefGoogle Scholar
  142. 142.
    S. Bhat, U.R. Acharya, N. Dadmehr, H. Adeli, Eur. Neurol. 74, 202 (2015) CrossRefGoogle Scholar
  143. 143.
    J.C. McBride, X. Zhao, N.B. Munro, G.A. Jicha, F.A. Schmitt, R.J. Kryscio, C.D. Smith, Y. Jiang, NeuroImage: Clinical 7, 258 (2015) CrossRefGoogle Scholar
  144. 144.
    E.B. Falk, D.S. Bassett, Trends Cogn. Sci. 21, 674 (2017) CrossRefGoogle Scholar
  145. 145.
    R.J. Field, J.A. Gallas, D. Schuldberg, Commun. Nonlinear Sci. Numer. Simul. 49, 135 (2017) ADSCrossRefGoogle Scholar
  146. 146.
    G. Pruessner, Self-organised criticality: theory, models and characterisation (Cambridge University Press, Cambridge, UK, 2012) Google Scholar
  147. 147.
    R. Desai, R. Kapral, Dynamics of self-organized and self-assembled structures (Cambridge University Press, Cambridge, UK, 2009) Google Scholar
  148. 148.
    M. Cross, H. Greenside, Pattern formation and dynamics in nonequilibrium systems (Cambridge University Press, Cambridge, UK, 2009) Google Scholar
  149. 149.
    D.L. Turcotte, Fractals and chaos in geology and geophysics (Cambridge University Press, Cambridge, UK, 1997) Google Scholar
  150. 150.
    L. Goehring, S.W. Morris, Phys. Today 67, 45 (2014) CrossRefGoogle Scholar
  151. 151.
    A. Farough, D.E. Moore, D.A. Lockner, R.P. Lowell, Geochem. Geophys. Geosyst. 17, 44 (2016) ADSCrossRefGoogle Scholar
  152. 152.
    A.D. Scott, D.M. King, N. Marić, S. Bahar, Europhys. Lett. 102, 68003 (2013) ADSCrossRefGoogle Scholar
  153. 153.
    D.M. King, A.D. Scott, S. Bahar, R. Soc. Open Sci. 4, 170005 (2017) MathSciNetCrossRefGoogle Scholar
  154. 154.
    P. Ball, The self-made tapestry: pattern formation in nature (Oxford University Press, Oxford, UK, 2003) Google Scholar
  155. 155.
    J. Davidsen, G. Kwiatek, Phys. Rev. Lett. 110, 068501 (2013) ADSCrossRefGoogle Scholar
  156. 156.
    S. Maghsoudi, D.W. Eaton, J. Davidsen, Geophys. Res. Lett. 43, 10672 (2016) ADSCrossRefGoogle Scholar
  157. 157.
    J. Davidsen, M. Baiesi, Phys. Rev. E 94, 022314 (2016) ADSCrossRefGoogle Scholar
  158. 158.
    S.E. Hough, Predicting the unpredictable: the tumultuous science of earthquake prediction (Princeton University Press, Princeton, NJ, USA, 2016) Google Scholar
  159. 159.
    M.L. Blanpied, D.A. Lockner, J.D. Byerlee, J. Geophys. Res.: Solid Earth 100, 13045 (1995) CrossRefGoogle Scholar
  160. 160.
    S.D. Goodfellow, M.H.B. Nasseri, S.C. Maxwell, R.P. Young, Geophys. Res. Lett. 49, 3179 (2015) ADSCrossRefGoogle Scholar
  161. 161.
    W.F. Brace, J.D. Byerlee, Science 153, 990 (1966) ADSCrossRefGoogle Scholar
  162. 162.
    B.D. Kilgore, A. McGarr, N.M. Beeler, D.A. Lockner, Earthquake source properties from instrumented laboratory stick-slip, in Fault zone dynamic processes: evolution of fault properties during seismic rupture, edited by M. Thomas, H. Bhat, T. Mitchell (American Geophysical Union, Washington, DC, USA, 2017), pp. 150–169 Google Scholar
  163. 163.
    S.P. Hubbell, The unified neutral theory of biodiversity and biogeography (Princeton University Press, Princeton, NJ, 2001) Google Scholar
  164. 164.
    S.P. Hubbell, Funct. Ecol. 19, 166 (2005) CrossRefGoogle Scholar
  165. 165.
    J. Grinnell, Auk 34, 427 (1917) CrossRefGoogle Scholar
  166. 166.
    G.E. Hutchinson, Cold Spring Harb. Symp. Quant. Biol. 22, 415 (1957) CrossRefGoogle Scholar
  167. 167.
    G.E. Hutchinson, Am. Nat. 93, 145 (1959) CrossRefGoogle Scholar
  168. 168.
    Y.M. Skiba, D.M. Filatov, Eur. Phys. J. Special Topics 226, 3303 (2017) Google Scholar
  169. 169.
    B. Hu, in Blow-up theories for semilinear parabolic equations, Lecture notes in mathematics (Springer-Verlag, Berlin-Heidelberg, 2011), Vol. 2018 Google Scholar
  170. 170.
    U. Frisch, Turbulence: the legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, UK, 2006) Google Scholar
  171. 171.
    L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon, F. Bonnefoy, J. Fluid Mech. 781, 196 (2015) ADSMathSciNetCrossRefGoogle Scholar
  172. 172.
    E. Falcon, S. Fauve, C. Laroche, Phys. Rev. Lett. 98, 154501 (2007) ADSCrossRefGoogle Scholar
  173. 173.
    M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D. Lathrop, J. Phys. Soc. Jpn. 77, 111007 (2008) ADSCrossRefGoogle Scholar
  174. 174.
    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. USA 111 (Suppl. 1), 4653 (2014) ADSCrossRefGoogle Scholar
  175. 175.
    A. Del Campo, W.H. Zurek, Int. J. Mod. Phys. A 29, 1430018 (2014) ADSCrossRefGoogle Scholar
  176. 176.
    A. Attanasi, A. Cavagna, L. Del Castello, I. Giardina, T.S. Grigera, A. Jelić, S. Melillo, L. Parisi, O. Pohl, E. Shen, M. Viale, arXiv:1303.7097 (2013)
  177. 177.
    W.H. Zurek, Nature 317, 505 (1985) ADSCrossRefGoogle Scholar
  178. 178.
    P.C. Hendry, N.S. Lawson, R.A.M. Lee, P.V. McClintock, C.D.H. Williams, Nature 368, 315 (1994) ADSCrossRefGoogle Scholar
  179. 179.
    S. Lloyd, IEEE Control Syst. Mag. 21, 7 (2001) CrossRefGoogle Scholar
  180. 180.
    N. Nagaraj, K. Balasubramanian, Eur. Phys. J. Special Topics 226, 3251 (2017) Google Scholar
  181. 181.
    A. Gersho, R.M. Gray, in Vector quantization and signal compression (Springer Science & Business Media, Medford, MA, USA, 2012), Vol. 159 Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Harold M. Hastings
    • 1
    • 2
  • Jörn Davidsen
    • 3
  • Henry Leung
    • 4
  1. 1.Division of Science, Mathematics and Computing, Bard College at Simon’s RockGreat BarringtonUSA
  2. 2.Department of Physics and AstronomyHofstra UniversityHempsteadUSA
  3. 3.Complexity Science Group, Department of Physics and Astronomy, University of CalgaryCalgaryCanada
  4. 4.Department of Electrical and Computer EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations