The European Physical Journal Special Topics

, Volume 226, Issue 14, pp 2997–3021 | Cite as

Nonlinear response and avalanche behavior in metallic glasses

  • B. Riechers
  • K. Samwer
Part of the following topical collections:
  1. Nonlinear Response to Probe Vitrification


The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke’s Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99, 135502 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 016001 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A. Argon, Acta Metallurgica 27, 47 (1979)CrossRefGoogle Scholar
  6. 6.
    A. Argon, L.T. Shi, Acta Metallurgica 31, 499 (1983)CrossRefGoogle Scholar
  7. 7.
    L. Shi, A. Argon, H. Kuo, Scripta Metallurgica 17, 1015 (1983)CrossRefGoogle Scholar
  8. 8.
    J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London A 241, 376 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. London A 252, 561 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    W. Johnson, K. Samwer, Phys. Rev. Lett. 95, 195501 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Phys. Rev. B 74, 012201 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, K. Samwer, MRS bulletin 32, 644 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Berthier, J.L. Barrat, Phys. Rev. Lett. 89, 095702 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P. Guan, M. Chen, T. Egami, Phys. Rev. Lett. 104, 205701 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T.C. Hufnagel, C.A. Schuh, M.L. Falk, Acta Mater. 109, 375 (2016)CrossRefGoogle Scholar
  16. 16.
    O. Perković, K. Dahmen, J.P. Sethna, Phys. Rev. Lett. 75, 4528 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    B. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Acta Mater. 60, 4160 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Herrero-Gómez, K. Samwer, Sci. Rep. 6, 33503 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A.E. Lagogianni (private Communications) (2017)Google Scholar
  21. 21.
    J.O. Krisponeit, S. Pitikaris, K.E. Avila, S. Küchemann, A. Krüger, K. Samwer, Nature Commun. 5, 3616 (2013)Google Scholar
  22. 22.
    A.K. Dubey, I. Procaccia, C.A.B.Z. Shor, M. Singh, Phys. Rev. Lett. 116, 085502 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon press, 1954)Google Scholar
  24. 24.
    Y. Cohen, I. Procaccia, Europhys. Lett. 99, 46002 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    A. Travesset, R.A. White, K.A. Dahmen, Phys. Rev. B 66, 024430 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    W. Huang, R. Richert, J. Phys. Chem. B 112, 9909 (2008)CrossRefGoogle Scholar
  29. 29.
    W. Huang, R. Richert, J. Chem. Phys. 130, 154508 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    J.P. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    C. Brun, F. Ladieu, D. l’Hôte, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    T. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    R. Richert, J. Chem. Phys. 144, 114501 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    A. Kahl, T. Koeppe, D. Bedorf, R. Richert, M. Lind, M. Demetriou, W. Johnson, W. Arnold, K. Samwer, Appl. Phys. Lett. 95, 201903 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    L. Hu, X. Bian, W. Wang, G. Liu, Y. Jia, J. Phys. Chem. B 109, 13737 (2005)CrossRefGoogle Scholar
  38. 38.
    V.N. Novikov, A.P. Sokolov, Phys. Rev. B 74, 064203 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    G. Wilde, G.P. Görler, R. Willnecker, H.J. Fecht, J. Appl. Phys. 87, 1141 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    E.F. Lambson, W.A. Lambson, J.E. Macdonald, M.R.J. Gibbs, G.A. Saunders, D. Turnbull, Phys. Rev. B 33, 2380 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    K. Schröter, G. Wilde, R. Willnecker, M. Weiss, K. Samwer, E. Donth, Eur. Phys. J. B 5, 1 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    S. Finkhäuser, Ph.D. thesis, Georg-August-Universität Göttingen, 2017,
  43. 43.
    B. Riechers, Ph.D. thesis, Georg-August-Universität Göttingen, 2017Google Scholar
  44. 44.
    R. deL. Kronig, J. Opt. Soc. Am. 12, 547 (1926)ADSCrossRefGoogle Scholar
  45. 45.
    H.A. Kramers, La diffusion de la lumiere par les atomes (1927)Google Scholar
  46. 46.
    T. Pritz, J. Sound Vibration 228, 1145 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    DMA 8000 - Service Manual (and Software program), Perkin Elmer (2007)Google Scholar
  48. 48.
    R. Richert, Phys. Rev. E 88, 062313 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    R. Richert (private Communications) (2014)Google Scholar
  50. 50.
    A.R. Young-Gonzales, S. Samanta, R. Richert, J. Chem. Phys. 143, 104504 (2015)ADSCrossRefGoogle Scholar
  51. 51.
    M.S. Beevers, D.A. Elliott, G. Williams, J. Chem. Soc. Faraday Transactions 2: Mol. Chem. Phys. 76, 112 (1980)CrossRefGoogle Scholar
  52. 52.
    P. Lunkenheimer, M. Michl, T. Bauer, A. Loidl, arXiv:1704.07348 (2017)
  53. 53.
    S.R. Elliott, Physics of Amorphous Materials (Longman, 1983)Google Scholar
  54. 54.
    S. Weinstein, R. Richert, J. Phys.: Condens. Matter 19, 205128 (2007)ADSGoogle Scholar
  55. 55.
    R. Richert (private Communications) (2014)Google Scholar
  56. 56.
    H.B. Yu, R. Richert, R. Maaß, K. Samwer, Nat. Commun. 6, 7179 (2015)CrossRefGoogle Scholar
  57. 57.
    M. Schwabe, D. Bedorf, K. Samwer, Eur. Phys. J. E 34, 91 (2011)CrossRefGoogle Scholar
  58. 58.
    D. Polk, D. Turnbull, Acta Metall. 20, 493 (1972)CrossRefGoogle Scholar
  59. 59.
    P.K. Jaiswal, I. Procaccia, C. Rainone, M. Singh, Phys. Rev. Lett. 116, 085501 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    B. Riechers, K. Samwer, R. Richert, J. Chem. Phys. 142, 154504 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    M. Tsamados, A. Tanguy, F. Léonforte, J.L. Barrat, Eur. Phys. J. E 26, 283 (2008)CrossRefGoogle Scholar
  62. 62.
    A. Greer, Y. Cheng, E. Ma, Mater. Sci. Eng. R 74, 71 (2013)CrossRefGoogle Scholar
  63. 63.
    R.A. White, K.A. Dahmen, Phys. Rev. Lett. 91, 085702 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    H.E. Stanley, Rev. Mod. Phys. 71, 358 (1999)CrossRefGoogle Scholar
  65. 65.
    G. Durin, S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    B. Tadić, Phys. Rev. Lett. 77, 3843 (1996)ADSCrossRefGoogle Scholar
  67. 67.
    P. Leishangthem, A.D. Parmar, S. Sastry, Nature Commun. 8, 14653 (2017)ADSCrossRefGoogle Scholar
  68. 68.
    A. Tanguy, F. Leonforte, J.L. Barrat, Eur. Phys. J. E 20, 355 (2006)CrossRefGoogle Scholar
  69. 69.
    P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, P. Schall, Phys. Rev. Lett. 107, 198303 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, Europhys. Lett. 100, 56001 (2012)ADSCrossRefGoogle Scholar
  72. 72.
    R. Richert (private communications) (2015)Google Scholar
  73. 73.
    P. Lunkenheimer, A. Loidl (private communications) (2017)Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.I. Physikalisches Institut, Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations