The European Physical Journal Special Topics

, Volume 226, Issue 14, pp 3079–3094 | Cite as

Driven granular fluids

Glass transition and microrheology
Regular Article
Part of the following topical collections:
  1. Nonlinear Response to Probe Vitrification


Dense granular media can be prepared in a stationary state by suitable driving. Such driving can be given by a random, momentum-conserving external force acting upon, say, a fluid comprised of inelastic hard spheres. While this out-of-equilibrium stationary state violates time reversal symmetry, it can still be investigated by means similar to ordinary fluids. For high enough density, the driven granular fluid undergoes a glass transition, and for this transition an extension to the mode-coupling theory can be derived. In addition to the quiescent stationary state, a kinetic theory as well as experiments in 2D for the active microrheology can be devised, where a selected intruder is pulled through the system as a probe for either constant velocity or force.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Greer, Metallic Glasses, Science 267, 1947 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    W. van Megen, Crystallisation and the glass transition in suspensions of hard colloidal spheres, Transp. Theory Stat. Phys. 24, 1017 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    R. Höhler, S. Cohen-Addad, Rheology of liquid foam, J. Phys.: Condens. Matter 17, R1041 (2005)ADSGoogle Scholar
  4. 4.
    G. Marty, O. Dauchot, Subdiffusion and cage effect in a sheared granular material, Phys. Rev. Lett. 94, 015701 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    A.R. Abate, D.J. Durian, Approach to jamming in an air-fluidized granular bed, Phys. Rev. E 74, 031308 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D.I. Goldman, H.L. Swinney, Signatures of glass formation in a fluidized bed of hard spheres, Phys. Rev. Lett. 96, 145702 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    P.M. Reis, R.A. Ingale, M.D. Shattuck, Caging dynamics in a granular fluid, Phys. Rev. Lett. 98, 188301 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Keys, A.R. Abate, S.C. Glotzer, D.J. Durian, Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys. 3, 260 (2007)CrossRefGoogle Scholar
  9. 9.
    R. Candelier, O. Dauchot, G. Biroli, Building blocks of dynamical heterogeneities in dense granular media, Phys. Rev. Lett. 102, 088001 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    K. Avila, H. Castillo, A. Fiege, K. Vollmayr-Lee, A. Zippelius, Strong dynamical heterogeneity and universal scaling in driven granular fluids, Phys. Rev. Lett. 113, 025701 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    H. Mizuno, L.E. Silbert, M. Sperl, Spatial distributions of local elastic moduli near the jamming transition, Phys. Rev. Lett. 116, 068302 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    U. Bengtzelius, W. Götze, A. Sjölander, Dynamics of supercooled liquids and the glass transition, J. Phys. C 17, 5915 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, USA, 2009)Google Scholar
  14. 14.
    W.T. Kranz, M. Sperl, A. Zippelius, Glass transition for driven granular fluids, Phys. Rev. Lett. 104, 225701 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sperl, W.T. Kranz, A. Zippelius, Single-particle dynamics in dense granular fluids under driving, EPL 98, 28001 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kranz, M. Sperl, A. Zippelius. Glass transition in driven granular fluids: A mode-coupling approach, Phys. Rev. E 87, 022207 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities, Phys. Rev. E 55, 7153 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition, Phys. Rev. E 58, 6073 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Sperl, Nearly-logarithmic decay in the colloidal hard-sphere system, Phys. Rev. E 71, 060401 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J. Bergenholtz, M. Fuchs, Non-ergodicity transitions in colloidal suspensions with attractive interactions Phys. Rev. E 59, 5706 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    K. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, Th. Voigtmann, E. Zaccarelli, Higher-order glass-transition singularities in colloidal systems with attractive interactions, Phys. Rev. E 63, 011401 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Multiple glassy states in a simple model system, Science 296, 104 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Glasses in hard spheres with short-range attraction, Phys. Rev. E 69, 011503 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Dynamic glass transition in two dimensions, Phys. Rev. E 76, 11508 (2007)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.R. Abate, D.J. Durian, Topological persistence and dynamical heterogeneities near jamming, Phys. Rev. E 76, 021306 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    A.J. Liu, S.R. Nagel, Jamming is not just cool any more, Nature 396, 21 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E 68, 011306 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ikeda, L. Berthier, P. Sollich, Unified study of glass and jamming rheology in soft particle systems, Phys. Rev. Lett. 109, 018301 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P. Olsson, S. Teitel, A thermal jamming versus thermalized glassiness in sheared frictionless particles, Phys. Rev E 88, R010301 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    M. Fuchs, M.E. Cates, Theory of nonlinear rheology and yielding of dense colloidal suspensions, Phys. Rev. Lett. 89, 248304 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Takehara, S. Fujimoto, K. Okumura, High-velocity drag friction in dense granular media, Europhys. Lett. 92, 44003 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    A. Fiege, M. Grob, A. Zippelius, Dynamics of an intruder in dense granular fluids, Granular Matt. 14, 247 (2012)CrossRefGoogle Scholar
  33. 33.
    T. Wang, M. Grob, A. Zippelius, M. Sperl, Active microrheology of driven granular particles, Phys. Rev. E 89, 042209 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    P.K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134, 401 (1983)ADSCrossRefMATHGoogle Scholar
  35. 35.
    N.V. Brilliantov, T. Pöschel, N. Brilliantov, Kinetic Theory of Granular Gases, (Clarendon Press Oxford, 2003)Google Scholar
  36. 36.
    J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids 3rd edn. (Academic Press, 2006)Google Scholar
  37. 37.
    M. Baus, J.L. Colot, Thermodynamics and structure of hard rods, disks, spheres, or hyperspheres virial from rescaled virial expansions, Phys. Rev. A 36, 3912 (1987)ADSCrossRefGoogle Scholar
  38. 38.
    N. Brilliantov, T. Poeschel, T. Kranz, A. Zippelius, Translations and rotations are correlated in granular gases, Phys. Rev. Lett. 98, 128001 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities, Phys. Rev. E 55, 7153 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    T. Gleim, W. Kob, K. Binder, How does the relaxation of a supercooled liquid depend on its microscopic dynamics?, Phys. Rev. Lett. 81, 4404 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    A. Yazdi, M. Sperl, Glassy dynamics of brownian particles with velocity-dependent friction, Phys. Rev. E 94, 032602 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    I. Gholami, A. Fiege, A. Zippelius, Slow dynamics and precursors of the glass transition in granular fluids, Phys. Rev. E 84, 031305 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    T.M. Squires, T.G. Mason, Fluid mechanics of microrheology, Ann. Rev. Fluid Mech. 42, 413 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    A. Habdas, D. Schaar, A. Levitt, E. Weeks, Forced motion of a probe particle near the colloidal glass transition, Europhys. Lett. 67, 477 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    I. Gazuz, A.M. Puertas, Th Voigtmann, M. Fuchs, Active and nonlinear microrheology in dense colloidal suspensions, Phys. Rev. Lett. 102, 248302 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    I. Gazuz, M. Fuchs, Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory, Phys. Rev. E 87, 032304 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    T. Wang, M. Sperl, Thinning and thickening in active microrheology, Phys. Rev. E 93, 22606 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    S. Pitikaris, Local mechanical properties of granular media, PhD Thesis, Universität zu Köln, 2017Google Scholar
  49. 49.
    A. Seguin, Y. Bertho, P. Gondret, J. Crassous, Sphere penetration by impact in a granular medium: A collisional process, Europhys. Lett. 88, 44002 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    A. Seguin, A. Lefebvre-Lepot, S. Faure, P. Gondret, Clustering and flow around a sphere moving into a grain cloud, Eur. Phys. J. E 39, 63 (2016)CrossRefGoogle Scholar
  51. 51.
    X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions, Science 333, 1276 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    W. Götze, Some aspects of phase transitions described by the self consistent current relaxation theory, Z. Phys. B 56, 139 (1984)ADSCrossRefGoogle Scholar
  53. 53.
    L. Sjögren, Diffusion of impurities in a dense fluid near the glass transition, Phys. Rev. A 33, 1254 (1986)ADSCrossRefGoogle Scholar
  54. 54.
    V. Krakoviack, C. Alba-Simionesco, M. Krauzman, Study of the depolarized light scattering spectra of supercooled liquids by a simple mode-coupling model, J. Chem. Phys. 107, 3417 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    A.P. Singh, G. Li, W. Götze, M. Fuchs, T. Franosch, H.Z. Cummins, Structural relaxation in orthoterphenyl: A schematic mode-coupling-theory model analysis, J. Non-Cryst. Solids 235, 66 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    B. Rufflé, C. Ecolivet, B. Toudic. Dynamics in the supercooled liquid na0.5li0.5po3: A schematic mode coupling mode analysis, Europhys. Lett. 45, 591 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    W. Götze, Th. Voigtmann, Universal and nonuniversal features of glassy relaxation in propylene carbonate, Phys. Rev. E 61, 4133 (2000)ADSCrossRefGoogle Scholar
  58. 58.
    V. Krakoviack, C. Alba-Simionesco, What can be learned from the schematic mode-coupling approach to experimental data? J. Chem. Phys. 117, 2161 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    A. Brodin, M. Frank, S. Wiebel, G. Shen, J. Wuttke, H.Z. Cummins, Brillouin-scattering study of propylene carbonate: An evaluation of phenomenological and mode coupling analyses, Phys. Rev. E 65, 051503 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    S. Wiebel, J. Wuttke, Structural relaxation and mode coupling in a non-glassforming liquid: Depolarized light scattering in benzene, New J. Phys. 4, 56 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    W. Götze and M. Sperl, Nearly-logarithmic decay of correlations in glass-forming liquids, Phys. Rev. Lett. 92, 105701 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    M. Sperl, Cole-cole law for critical dynamics in glass-forming liquids, Phys. Rev. E 74, 011503 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    M. Sperl, Asymptotic description of schematic models for ckn, J. Non-Cryst. Solids 352, 4851 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    Elmar Stärk, Dynamics of granular matter in two dimensions, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2012Google Scholar
  65. 65.
    R. Candelier, O. Dauchot, Creep motion of an intruder within a granular glass close to jamming, Phys. Rev. Lett. 103, 128001 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    T. Wang, Nonlinear response in active microrheology, PhD Thesis, Heinrich-Heine-Universität Düsseldorf, 2015Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und RaumfahrtKölnGermany
  2. 2.Institut für Theoretische Physik, Universität zu KölnKölnGermany
  3. 3.Georg-August-Universität Göttingen, Institut für Theoretische PhysikGöttingenGermany

Personalised recommendations