Skip to main content

Advertisement

Log in

Nonlinear response from the perspective of energy landscapes and beyond

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.G. Debenedetti, Metastable Liquids (Princeton University Press, 1997)

  2. M.D. Ediger, J. Phys. Chem. 100, 13200 (1996)

    Article  Google Scholar 

  3. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)

    Article  ADS  Google Scholar 

  4. D.J. Wales, Energy landscapes (Cambridge University Press, 2003)

  5. F. Sciortino, J. Stat. Mech. 2005, P05015 (2005)

    Article  Google Scholar 

  6. J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)

    Article  ADS  Google Scholar 

  7. T.A. Waigh, Rep. Prog. Phys. 68, 685 (2005)

    Article  ADS  Google Scholar 

  8. P. Cicuta, A.M. Donald, Soft Matter 3, 1449 (2007)

    Article  ADS  Google Scholar 

  9. J.O. Isard, J. Non-Cryst. Solids 202, 137 (1996)

    Article  ADS  Google Scholar 

  10. S. Murugavel, B. Roling, J. Non-Cryst. Solids 351, 2819 (2005)

    Article  ADS  Google Scholar 

  11. M. Goldstein, J. Chem. Phys. 51, 3728 (1969)

    Article  ADS  Google Scholar 

  12. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)

    Google Scholar 

  13. M.D. Ediger, P. Harrowell, J. Chem. Phys. 137, 080901 (2012)

    Article  ADS  Google Scholar 

  14. S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)

    Article  ADS  Google Scholar 

  15. B. Doliwa, A. Heuer, J. Phys. C: Cond. Mat. 15, S849 (2003)

    ADS  Google Scholar 

  16. M. Vogel, B. Doliwa, A. Heuer, S.C. Glotzer, J. Chem. Phys. 120, 4404 (2004)

    Article  ADS  Google Scholar 

  17. W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)

    Article  ADS  Google Scholar 

  18. S. Büchner, A. Heuer, Phys. Rev. E 60, 6507 (1999)

    Article  ADS  Google Scholar 

  19. C. Rehwald, O. Rubner, A. Heuer, Phys. Rev. Lett. 105, 117801 (2010)

    Article  ADS  Google Scholar 

  20. B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993)

    Article  ADS  Google Scholar 

  21. T.F. Middleton, J. Hernández-Rojas, P.N. Mortenson, D.J. Wales, Phys. Rev. B 64, 184201 (2001)

    Article  ADS  Google Scholar 

  22. P. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)

    Article  ADS  Google Scholar 

  23. G.P. Shrivastav, P. Chaudhuri, J. Horbach, Phys. Rev. E 94, 042605 (2016)

    Article  ADS  Google Scholar 

  24. D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. E 88, 020301(R) (2013)

    Article  ADS  Google Scholar 

  25. F.H. Stillinger, Science 267, 1935 (1995)

    Article  ADS  Google Scholar 

  26. B. Doliwa, A. Heuer, Phys. Rev. E 67, 030501 (2003)

    Article  ADS  Google Scholar 

  27. C. Monthus, J.P. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)

    Article  ADS  Google Scholar 

  28. W. Kob, F. Sciortino, P. Tartaglia, Europhys. Lett. 49, 590 (2000)

    Article  ADS  Google Scholar 

  29. P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  30. A. Nicolas, K. Martens, J.-L. Barrat, Europhys. Lett. 107, 44003 (2014)

    Article  ADS  Google Scholar 

  31. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)

    Article  ADS  Google Scholar 

  32. A. Einstein, Ann. Phys. 322, 549 (1905)

    Article  Google Scholar 

  33. C.F.E. Schroer, A. Heuer, J. Chem. Phys. 143, 224501 (2015)

    Article  ADS  Google Scholar 

  34. A. Meyer, A. Marshall, B.G. Bush, E.M. Furst, J. Rheol. 50, 77 (2006)

    Article  ADS  Google Scholar 

  35. L.G. Wilson, A.W. Harrison, A.B. Schofield, J. Arlt, W.C.K. Poon, J. Phys. Chem. B 113, 3806 (2009)

    Article  Google Scholar 

  36. P. Habdas, D. Schaar, A.C. Levitt, E.R. Weeks, Europhys. Lett. 67, 477 (2004)

    Article  ADS  Google Scholar 

  37. J.P.G.R.L. Jack, D. Kelsey, D. Chandler, Phys. Rev. E 78, 011506 (2008)

    Article  ADS  Google Scholar 

  38. Y. Takehara, S. Fujimoto, K. Okumura, Europhys. Lett. 92, 44003 (2010)

    Article  ADS  Google Scholar 

  39. S.R. Williams, D.J. Evans, Phys. Rev. Lett. 96, 015701 (2006)

    Article  ADS  Google Scholar 

  40. R.N. Zia, J.F. Brady, J. Rheol. 57, 457 (2013)

    Article  ADS  Google Scholar 

  41. T.M. Squires, J.F. Brady, Phys. Fluids 17, 073101 (2005)

    Article  ADS  Google Scholar 

  42. I. Gazuz, M. Puertas, T. Voigtmann, M. Fuchs, Phys. Rev. Lett. 102, 248302 (2009)

    Article  ADS  Google Scholar 

  43. M.V. Gnann, I. Gazuz, A.M. Puertas, M. Fuchs, T. Voigtmann, Soft Matter 7, 1390 (2011)

    Article  ADS  Google Scholar 

  44. C.J. Harrer, A.M. Puertas, T. Voigtmann, M. Fuchs, Z. Phys. Chem. 226, 779795 (2012)

    Article  Google Scholar 

  45. C.J. Harrer, D. Winter, J. Horbach, M. Fuchs, T. Voigtmann, J. Phys.: Condens. Matter 24, 464105 (2012)

    ADS  Google Scholar 

  46. D. Winter, J. Horbach, P. Virnau, K. Binder, Phys. Rev. Lett. 108, 028303 (2012)

    Article  ADS  Google Scholar 

  47. D. Winter, J. Horbach, J. Chem. Phys. 138, 12A512 (2013)

    Article  Google Scholar 

  48. C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013)

    Article  ADS  Google Scholar 

  49. C. Reichhardt, C.O. Reichhardt, Phys. Rev. E 74, 011403 (2006)

    Article  ADS  Google Scholar 

  50. I. Ladadwa, A. Heuer, Phys. Rev. E 87, 012302 (2013)

    Article  ADS  Google Scholar 

  51. I. Santamaria-Holek, A. Perez-Madrid, J. Phys. Chem. B 115, 9439 (2011)

    Article  Google Scholar 

  52. I. Santamaria-Holek, A. Perez-Madrid, J. Chem. Phys. 145, 134905 (2016)

    Article  ADS  Google Scholar 

  53. E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)

    Article  ADS  Google Scholar 

  54. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  55. P. Hanggi, J. Stat. Phys. 42, 105 (1986)

    Article  ADS  Google Scholar 

  56. A.R. Genreith-Schriever, R.A. De Souza, Phys. Rev. B 94, 224304 (2016)

    Article  ADS  Google Scholar 

  57. H. Lammert, A. Heuer, Phys. Rev. Lett. 104, 125901 (2010)

    Article  ADS  Google Scholar 

  58. M. Kunow, A. Heuer, J. Chem. Phys. 124, 214703 (2006)

    Article  ADS  Google Scholar 

  59. S. Röthel, R. Friedrich, L. Lühning, A. Heuer, Z. Phys. Chem. 224, 1855 (2010)

    Article  Google Scholar 

  60. A. Heuer, L. Lühning, J. Chem. Phys. 140, 094508 (2014)

    Article  ADS  Google Scholar 

  61. S. Leitmann, T. Franosch, Phys. Rev. Lett. 111, 190603 (2013)

    Article  ADS  Google Scholar 

  62. A. Heuer, S. Murugavel, B. Roling, Phys. Rev. B 72, 174304 (2005)

    Article  ADS  Google Scholar 

  63. L.N. Patro, O. Burghaus, B. Roling, J. Chem. Phys. 142, 064505 (2015)

    Article  ADS  Google Scholar 

  64. L.N. Patro, O. Burghaus, B. Roling, Phys. Rev. Lett. 116, 185901 (2016)

    Article  ADS  Google Scholar 

  65. P.C. Howlett, D.R. MacFarlane, A.F. Hollenkam, Electrochem. Solid State Lett. 7, A97 (2004)

    Article  Google Scholar 

  66. N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S.T. Boles, T. Hanemann, H. Hahn, S. Indris, J. Power Sources 228, 237 (2013)

    Article  Google Scholar 

  67. H.K. Kashyap, H.V.R. Annapureddy, F.O. Raineri, C.J. Margulis, J. Phys. Chem. B 115, 13212 (2011)

    Article  Google Scholar 

  68. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  69. S. Plimpton, P. Crozier, A. Thompson, LAMMPS – Large-Scale Atomic/Molecular Massively Parallel Simulator, http://lammps.sandia.gov, Sandia National Laboratories

  70. S. Plimpton, P. Crozier, A. Thompson, Sandia National Laboratories 18 (2007)

  71. J.N.C. Lopes, J. Deschamps, A.A.H. Pádua, J. Phys. Chem. B 108, 2038 (2004)

    Article  Google Scholar 

  72. J.N.C. Lopes, A.A.H. Pádua, J. Phys. Chem. B 108, 16893 (2004)

    Article  Google Scholar 

  73. J.N.C. Lopes, A.A.H. Pádua, J. Phys. Chem. B 110, 19586 (2006)

    Article  Google Scholar 

  74. L. Onsager, J. Chem. Phys. 2, 599 (1934)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Heuer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuer, A., Schroer, C.F.E., Diddens, D. et al. Nonlinear response from the perspective of energy landscapes and beyond. Eur. Phys. J. Spec. Top. 226, 3061–3078 (2017). https://doi.org/10.1140/epjst/e2017-70080-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70080-x

Navigation