The European Physical Journal Special Topics

, Volume 226, Issue 10, pp 2421–2438 | Cite as

Sum of exit times in a series of two metastable states

Regular Article
Part of the following topical collections:
  1. Aspects of Statistical Mechanics and Dynamical Complexity

Abstract

The problem of not degenerate in energy metastable states forming a series in the framework of reversible finite state space Markov chains is considered. Metastability has been widely studied both in the mathematical and physical literature. Metastable states arises close to a first order phase transition, when the system can be trapped for a long time (exponentially long with respect to the inverse of the temperature) before switching to the thermodynamically stable phase. In this paper, under rather general conditions, we give a sharp estimate of the exit time from a metastable state in a presence of a second metastable state that must be necessarily visited by the system before eventually reaching the stable phase. In this framework we give a sharp estimate of the exit time from the metastable state at higher energy and, on the proper exponential time scale, we prove an addition rule. As an application of the theory, we study the Blume-Capel model in the zero chemical potential case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Manzo, F.R. Nardi, E. Olivieri, E. Scoppola, J. Stat. Phys. 115, 591 (2004)CrossRefADSGoogle Scholar
  2. 2.
    E. Olivieri, E. Scoppola, J. Stat. Phys. 79, 613 (1995)CrossRefADSGoogle Scholar
  3. 3.
    E. Olivieri, M.E. Vares, Large deviations and metastability (Cambridge University Press, UK, 2004)Google Scholar
  4. 4.
    E.N.M. Cirillo, F.R. Nardi, J. Sohier, J. Stat. Phys. 161, 365 (2015)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    A. Bovier, M. Eckhoff, V. Gayrard, M. Klein, Comm. Math. Phys. 228, 219 (2002)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    A. Bovier, F. den Hollander, Metastability: a potential–theoretic approach (Grundlehren der mathematischen Wissenschaften, Springer, 2015)Google Scholar
  7. 7.
    M. Slowik, Metastability in Stochastic Dynamics: Contributions to the Potential Theoretic Approach (Südwestdeutscher Verlag für Hochschulschriften, 2012)Google Scholar
  8. 8.
    J. Beltrán, C. Landim, J. Stat. Phys. 140, 1065 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Bovier, F. Manzo, J. Stat. Phys. 107, 757 (2002)CrossRefADSGoogle Scholar
  10. 10.
    M. Blume, Phys. Rev. 141, 517 (1966)CrossRefADSGoogle Scholar
  11. 11.
    H.W. Capel, Physica 32, 966 (1966)CrossRefADSGoogle Scholar
  12. 12.
    E.N.M. Cirillo, F.R. Nardi, J. Stat. Phys. 150, 1080 (2013)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    E.N.M. Cirillo, E. Olivieri, J. Stat. Phys. 83, 473 (1996)CrossRefADSGoogle Scholar
  14. 14.
    C. Landim, P. Lemire, J. Stat. Phys. 164, 346 (2016)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    F. Manzo, E. Olivieri, J. Stat. Phys. 104, 1029 (2001)CrossRefADSGoogle Scholar
  16. 16.
    E.N.M. Cirillo, F.R. Nardi, J. Stat. Phys. 110, 183 (2003)CrossRefGoogle Scholar
  17. 17.
    E.N.M. Cirillo, F.R. Nardi, C. Spitoni, Sum of exit times in a series of two metastable states in Probabilistic Cellular Automata, in Cellular Automata and Discrete Complex Systems, 22nd IFIP WG 1.5 International Workshop, AUTOMATA 2016, Zurich, Switzerland, June 15, 2016, Proceedings (Springer, 2016)Google Scholar
  18. 18.
    O. Catoni, Simulated annealing algorithms and Markov chains with rare transitions, in Séminaire de Probabilités, XXXIII, Vol. 1709 of Lecture Notes in Math. (Springer, Berlin, 1999), p. 69Google Scholar
  19. 19.
    G. Grinstein, C. Jayaprakash, Y. He, Phys. Rev. Lett. 55, 2527 (1985)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    E.N.M. Cirillo, P.-Y. Louis, W. Ruszel, C. Spitoni, Chaos, Solitons, and Fractals 64, 36 (2014)CrossRefADSGoogle Scholar
  21. 21.
    S. Bigelis, E.N.M. Cirillo, J.L. Lebowitz, E.R. Speer, Phys. Rev. E 59, 3935 (1999)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    A. Bovier, Metastability: a potential theoretic approach, in Proceedings of ICM 2006 (EMS Publishing House, 2006), p. 499Google Scholar
  23. 23.
    A. Gaudillière, Condenser physics applied to Markov Chains, in XII Escola Brasileira de Probabilidade, Ouro Preto (Minas Gerais, Brazil, 2008)Google Scholar
  24. 24.
    A. Bovier, F. den Hollander, F.R. Nardi, Probab. Theory Relat. Fields 135, 265 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Bovier, F. den Hollander, C. Spitoni, Ann. Prob. 38, 661 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di RomaRomaItaly
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  3. 3.Department of MathematicsUtrechtThe Netherlands

Personalised recommendations