The European Physical Journal Special Topics

, Volume 226, Issue 11, pp 2445–2456 | Cite as

Challenges from experiment: electronic structure of NiO

  • C. -Y. Kuo
  • T. Haupricht
  • J. Weinen
  • Hua Wu
  • K. -D. Tsuei
  • M. W. Haverkort
  • A. Tanaka
  • L. H. TjengEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials


We report on a detailed experimental and theoretical study of the electronic structure of NiO. The charge-transfer nature of the band gap as well as the intricate interplay between local electronic correlations and band formation makes NiO to be a challenging case for a quantitative ab-initio modeling of its electronic structure. To reproduce the compensated-spin character of the first ionization state and the state created by hole doping requires a reliable determination of the charge transfer energy Δ relative to the Hubbard U. Furthermore, the presence of non-local screening processes makes it necessary to go beyond single-site many body approaches to explain the valence band spectrum.


  1. 1.
    W.L. Roth, Phys. Rev. 110, 1333 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. de Boer, E.J.W. Verwey, Proc. Phys. Soc. 49, 59 (1937)ADSCrossRefGoogle Scholar
  3. 3.
    N.F. Mott, Proc. Phys. Soc. London A 62, 416 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hubbard, Proc. R. Soc. London A 276, 238 (1963)ADSCrossRefGoogle Scholar
  5. 5.
    T. Oguchi, K. Terakura, A.R. Williams, Phys. Rev. B 28, 6443 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    K. Terakura, A.R. Williams, T. Oguchi, J. Kübler, Phys. Rev. Lett. 52, 1830 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    K. Terakura, T. Oguchi, A.R. Williams, J. Kübler, Phys. Rev. B 30, 4734 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    H. Eskes, G.A. Sawatzky, Phys. Rev. Lett. 61, 1415 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Yeh, I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    J. van Elp, H. Eskes, P. Kuiper, G.A. Sawatzky, Phys. Rev. B 45, 1612 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    P. Kuiper, G. Kruizinga, J. Ghijsen, G.A. Sawatzky, H. Verweij, Phys. Rev. Lett. 62, 221 (1989)ADSCrossRefGoogle Scholar
  18. 18.
    A. Tanaka, T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    F.M.F. de Groot, J. Electron. Spectrosc. Relat. Phenom. 67, 529 (1994)CrossRefGoogle Scholar
  20. 20.
    See the Theo Thole Memorial Issue, J. Electron, Spectrosc. Relat. Phenom. 86, 1 (1997)Google Scholar
  21. 21.
    D. Alders, L.H. Tjeng, F.C. Voogt, T. Hibma, G.A. Sawatzky, C.T. Chen, J. Vogel, M. Sacchi, S. Iacobucci, Phys. Rev. B 57, 11623 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    M.W. Haverkort, S.I. Csiszar, Z. Hu, S. Altieri, A. Tanaka, H.H. Hsieh, H.-J. Lin, C.T. Chen, T. Hibma, L.H. Tjeng, Phys. Rev. B 69, 020408 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    T. Haupricht, PhD thesis, University of Cologne, 2011Google Scholar
  24. 24.
    A. Tanaka, J. Phys. Soc. Jpn. 68, 3493 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. van Veenendaal, G.A. Sawatzky, Phys. Rev. Lett. 70, 2459 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    H. Jiang, R.I. Gomez-Abal, P. Rinke, M. Scheffler, Phys. Rev. B 82, 045108 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S. Das, J.E. Coulter, E. Manousakis, Phys. Rev. B 91, 115105 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, D. Vollhardt, Phys. Rev. B 74, 195114 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    J. Kunes, V.I. Anisimov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. B 75, 165115 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    J. Kunes, V.I. Anisimov, S.L. Skornyakov, A.V. Lukoyanov, D. Vollhardt, Phys. Rev. Lett. 99, 156404 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Q. Yin, A. Gordienko, X. Wan, S.Y. Savrasov, Phys. Rev. Lett. 100, 066406 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    O. Miura, T. Fujiwara, Phys. Rev. B 77, 195124 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    I. Nekrasov, V. Pavlov, M. Sadovskii, JETP Lett. 95, 581 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    P. Thunström, I. Di Marco, O. Eriksson, Phys. Rev. Lett. 109, 186401 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Jian-Zhou, Z. Jia-Ning, D. Xiao-Yu, B. Yan, C. Ling-Cang, F. Zhong, D. Xi, Chin. Phys. B 21, 057106 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    A. Hariki, Y. Ichinozuka, T. Uozumi, J. Phys. Soc. Jpn. 82, 043710 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    R. Eder, A. Dorneich, H. Winter, Phys. Rev. B 71, 045105 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    R. Eder, Phys. Rev. B 76, 241103 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    R. Eder, Phys. Rev. B 78, 115111 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    R. Eder, Phys. Rev. B 91, 245146 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    R. Sakuma, F. Aryasetiawan, Phys. Rev. B 87, 165118 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    M. Karolak, G. Ulm, T. Wehling, V. Mazurenko, A. Poteryaev, A. Lichtenstein, J. Elec. Spectosc. Rel. Phen. 181, 11 (2010)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany
  2. 2.Institute of Physics II, University of CologneCologneGermany
  3. 3.Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, and Department of Physics, Fudan UniversityShanghaiP.R. China
  4. 4.National Synchrotron Radiation Research CenterHsinchuTaiwan
  5. 5.Institute for theoretical physics, Heidelberg UniversityHeidelbergGermany
  6. 6.Department of Quantum MatterADSM, Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations