The European Physical Journal Special Topics

, Volume 226, Issue 11, pp 2477–2498 | Cite as

A self-consistent, relativistic implementation of the LSDA+DMFT method

  • J. Minár
  • H. Ebert
  • L. Chioncel
Open Access
Part of the following topical collections:
  1. Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials


In this review we report on developments and various applications of the combined Density Functional and Dynamical Mean-Field Theory, the so-called LSDA + DMFT method, as implemented within the fully relativistic KKR (Korringa-Kohn-Rostoker) band structure method. The KKR uses a description of the electronic structure in terms of the single-particle Green function, which allows to study correlation effects in ordered and disordered systems independently of its dimensionality (bulk, surfaces and nano-structures). We present self-consistent LSDA+DMFT results for the ground state and spectroscopic properties of transition metal elements and their compounds. In particular we discuss the spin-orbit induced orbital magnetic moments for Fe x Ni1−x disordered alloys, the magnetic Compton profiles of fcc Ni and the angle-resolved photoemission spectroscopy (ARPES) spectra for gallium manganese arsenide dilute magnetic semiconductors. For the (GaMn)As system a direct comparison with the experimental ARPES spectra demonstrates the importance of matrix element effects, the presence of the semi-infinite surface and the inclusion of layer-dependent self-energies.


  1. 1.
    G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    K. Held, Adv. Phys. 56, 829 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J. Minár, J. Phys.: Condens. Matter 23, 253201 (2011)ADSGoogle Scholar
  4. 4.
    S.Y. Savrasov, G. Kotliar, Phys. Rev. B 69, 245101 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J. Minár, L. Chioncel, A. Perlov, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 72, 045125 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74, 096501 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    V. Drchal, V. Janiš, J. Kudrnovský, Phys. Rev. B 60, 15664 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Chadov, J. Minár, M.I. Katsnelson, H. Ebert, D. Ködderitzsch, A.I. Lichtenstein, Europhys. Lett. 82, 37001 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    O. Šipr, J. Minár, S. Mankovsky, H. Ebert, Phys. Rev. B 78, 144403 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    O. Šipr, J. Minár, A. Scherz, H. Wende, H. Ebert, Phys. Rev. B 84, 115102 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Pickel, A.B. Schmidt, F. Giesen, J. Braun, J. Minár, H. Ebert, M. Donath, M. Weinelt, Phys. Rev. Lett. 101, 066402 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J. Minr, S. Mankovsky, O. ipr, D. Benea, H. Ebert, J. Phys.: Condens. Matter 26, 274206 (2014)ADSGoogle Scholar
  13. 13.
    I. Di Marco, J. Minár, J. Braun, M.I. Katsnelson, A. Grechnev, H. Ebert, A.I. Lichtenstein, O. Eriksson, Eur. Phys. J. B 72, 473 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    I. Di Marco, J. Minár, S. Chadov, M.I. Katsnelson, H. Ebert, A.I. Lichtenstein, Phys. Rev. B 79, 115111 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J. Braun, J. Minár, F. Matthes, C.M. Schneider, H. Ebert, Phys. Rev. B 82, 024411 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    S. Chadov, G.H. Fecher, C. Felser, J. Minár, J. Braun, H. Ebert, J. Phys. D: Appl. Phys. 42, 084002 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Wüstenberg, R. Fetzer, M. Aeschlimann, M. Cinchetti, J. Minár, J. Braun, H. Ebert, T. Ishikawa, T. Uemura, M. Yamamoto, Phys. Rev. B 85, 064407 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A.X. Gray, J. Minár, S. Ueda, P.R. Stone, Y. Yamashita, J. Fujii, J. Braun, L. Plucinski, C.M. Schneider, G. Panaccione, et al., Nat. Mater. 11, 957 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J. Fujii, B.R. Salles, M. Sperl, S. Ueda, M. Kobata, K. Kobayashi, Y. Yamashita, P. Torelli, M. Utz, C.S. Fadley, et al., Phys. Rev. Lett. 111, 097201 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Sánchez-Barriga, J. Minár, J. Braun, A. Varykhalov, V. Boni, I. Di Marco, O. Rader, V. Bellini, F. Manghi, H. Ebert, et al., Phys. Rev. B 82, 104414 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Kronseder, J. Minár, J. Braun, S. Günther, G. Woltersdorf, H. Ebert, C.H. Back, Phys. Rev. B 83, 132404 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    J. Minár, J. Braun, S. Mankovsky, H. Ebert, J. Electron. Spectrosc. Relat. Phenom. 184, 91 (2011)CrossRefGoogle Scholar
  23. 23.
    M.E. Rose, Relativistic Electron Theory (Wiley, New York, 1961)Google Scholar
  24. 24.
    P. Strange, J. Staunton, B.L. Gyorffy, J. Phys. C: Solid State Phys. 17, 3355 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    H. Ebert, B.L. Gyorffy, J. Phys. F: Met. Phys. 18, 451 (1988)ADSCrossRefGoogle Scholar
  26. 26.
    B.L. Györffy, M.J. Stott, Band Structure Spectroscopy of Metals and Alloys (Academic Press, New York, 1973), p. 385Google Scholar
  27. 27.
    A. Gonis, W.H. Butler, Multiple scattering in solids, Graduate Texts in Contemporary Physics (Springer, Berlin, 1999)Google Scholar
  28. 28.
    P. Weinberger, Electron Scattering Theory for Ordered and Disordered Matter (Oxford University Press, Oxford, 1990)Google Scholar
  29. 29.
    H. Ebert, Fully Relativistic Band Structure Calculations for Magnetic Solids – Formalism and Application, in Electronic Structure and Physical Properties of Solids, edited by H. Dreyssé (Springer, Berlin, 2000), Vol. 535 of Lecture Notes in Physics, p. 191Google Scholar
  30. 30.
    E. Tamura, Phys. Rev. B 45, 3271 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    L.V. Pourovskii, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 72, 115106 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    B. Glaubitz, S. Buschhorn, F. Brüssing, R. Abrudan, H. Zabel, J. Phys.: Condens. Matter 23, 254210 (2011)ADSGoogle Scholar
  34. 34.
    P.H. Dederichs, R. Zeller, H. Akai, H. Ebert, J. Magn. Magn. Mater. 100, 241 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    I.V. Solovyev, A.I. Liechtenstein, K. Terakura, Phys. Rev. Lett. 80, 5758 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    I.V. Solovyev, Phys. Rev. Lett. 95, 267205 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    S. Chadov, J. Minár, H. Ebert, A. Perlov, L. Chioncel, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 74, R140411 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    J. Minár, H. Ebert, C. De Nadaï, N.B. Brookes, F. Venturini, G. Ghiringhelli, L. Chioncel, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 95, 166401 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J. Braun, J. Minár, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. Lett. 97, 227601 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    J. Sánchez-Barriga, J. Fink, V. Boni, I. Di Marco, J. Braun, J. Minár, A. Varykhalov, O. Rader, V. Bellini, F. Manghi, et al., Phys. Rev. Lett. 103, 267203 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    T. Allmers, M. Donath, J. Braun, J. Minár, H. Ebert, Phys. Rev. B 84, 245426 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    J. Braun, J. Minár, H. Ebert, A. Chainani, J. Miyawaki, Y. Takata, M. Taguchi, M. Oura, S. Shin, Phys. Rev. B 85, 165105 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    D. Benea, J. Minár, L. Chioncel, S. Mankovsky, H. Ebert, Phys. Rev. B 85, 085109 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, D. Vollhardt, Phys. Stat. Sol. (b) 243, 2599 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    F. Manghi, V. Bellini, J. Osterwalder, T.J. Kreutz, P. Aebi, C. Arcangeli, Phys. Rev. B 59, R10409 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    J. Braun, Rep. Prog. Phys. 59, 1267 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    L. Chioncel, D. Benea, H. Ebert, I. Di Marco, J. Minár, Phys. Rev. B 89, 094425 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    L. Chioncel, D. Benea, S. Mankovsky, H. Ebert, J. Minar, Phys. Rev. B 90, 184426 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    M J Cooper, Rep. Prog. Phys. 48, 415 (1985)ADSCrossRefGoogle Scholar
  50. 50.
    D. Benea, Theoretical Description of Magnetic Compton Scattering and Magnetic Properties of Cr-chalcogenide Compounds, PhD thesis, LMU M location”unchen, 2004Google Scholar
  51. 51.
    S. Wakoh, Y. Kubo J, Magn. Magn. Mater. 5, 202 (1977)ADSCrossRefGoogle Scholar
  52. 52.
    T. Baruah, R.R , Zope, A. Kshirsagar, Phys. Rev. B 62, 16435 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    M. Tokii, M. Matsumoto, J. Phys.: Condens. Matter 18, 3639 (2006)ADSGoogle Scholar
  54. 54.
    Y. Kubo, J. Phys. Chem. Solids 65, 2077 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    J. Rath, C.S. Wang, R.A. Tawil, J. Callaway, Phys. Rev. B 8, 5139 (1973)ADSCrossRefGoogle Scholar
  56. 56.
    L. Lam, P.M. Platzman, Phys. Rev. B. 9, 5122 (1974)ADSCrossRefGoogle Scholar
  57. 57.
    L. Lam, P.M. Platzman, Phys. Rev. B. 9, 5128 (1974)ADSCrossRefGoogle Scholar
  58. 58.
    S. Wakoh, M. Matsumoto, J. Phys.: Condens. Matter 2, 797 (1990)ADSGoogle Scholar
  59. 59.
    G.E.W. Bauer, J.R. Schneider, Z. Phys. B 54, 17 (1983)ADSCrossRefGoogle Scholar
  60. 60.
    G.E.W. Bauer, Phys. Rev. B 30, 1010 (1984)ADSCrossRefGoogle Scholar
  61. 61.
    Y. Kubo, J. Phys. Chem. Sol. 62, 2199 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    P. Eisenberger, W.A. Reed, Phys. Rev. B 9, 3242 (1974)ADSCrossRefGoogle Scholar
  63. 63.
    C.S. Wang, J. Callaway, Phys. Rev. B 11, 2417 (1975)ADSCrossRefGoogle Scholar
  64. 64.
    D.L. Anastassopoulos, G.D. Priftis, N.I. Papanicolau, N.C. Bacalis, D.A. Papaconstantopoulos, J. Phys.: Condens. Matter 3, 1099 (1990)ADSGoogle Scholar
  65. 65.
    A.J. Rollason, J.R. Schneider, D.S. Laundy, R.S. Holt, M.J. Cooper, J. Phys. F: Met. Phys. 17, 1105 (1987)ADSCrossRefGoogle Scholar
  66. 66.
    L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)ADSCrossRefGoogle Scholar
  67. 67.
    V.M. Galitskii, A.B. Migdal, Sov. Phys. J.E.T.P. 7, 96 (1958)Google Scholar
  68. 68.
    L. Mel, J.P. Perdew, Phys. Rev. A 32, 2010 (1985)ADSCrossRefGoogle Scholar
  69. 69.
    I.J. Rodríguez, J.W. Ayers, P.W. Götz, A.F.L. Castillo-Alvarado, J. Chem. Phys. 131, 0210101 (2009)CrossRefGoogle Scholar
  70. 70.
    O. Granas, I. di Marco, P. Thunström, L. Nordström, O. Eriksson, T. Björkman, J.M. Wills, Comp. Mater. Science 55, 295 (2012)CrossRefGoogle Scholar
  71. 71.
    Y. Sakurai, Y , Tanaka, T. Ohata, Y. Watanabe, S. Nanao, Y , Ushigami, T. Iwazumi, H. Kawata, N. Shiotani, J. Phys.: Condens. Matter 6, 9469 (1994)ADSGoogle Scholar
  72. 72.
    M.A.G. Dixon, J.A. Duffy, S. Gardelis, J.E. McCarthy, M.J. Cooper, S.B. Dugdale, T. Jarlborg, D.N. Timms, J. Phys.: Condens. Matter 10, 2759 (1998)ADSGoogle Scholar
  73. 73.
    Z. Szotek, B.L. Gyorffy, G.M. Stocks, W.M. Temmerman, J. Phys. F: Met. Phys. 14, 2571 (1984)ADSCrossRefGoogle Scholar
  74. 74.
    D. Benea, S. Mankovskyy, H. Ebert, Phys. Rev. B 73, 94411 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    R.D. McNorton, J.M. MacLaren, J. Phys.: Condens. Matter 21, 445803 (2009)Google Scholar
  76. 76.
    A. Grechnev, I. Di Marco, M.I. Katsnelson, A.I. Lichtenstein, J. Wills, O. Eriksson, Phys. Rev. B 76, 035107 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    J.B. Pendry, Low Energy Electron Diffraction (Academic Press, London, 1974)Google Scholar
  78. 78.
    J.F.L. Hopkinson, J.B. Pendry, D.J. Titterington, Comp. Phys. Commun. 19, 69 (1980)ADSCrossRefGoogle Scholar
  79. 79.
    J.B. Pendry, Surf. Sci. 57, 679 (1976)ADSCrossRefGoogle Scholar
  80. 80.
    J. Sánchez-Barriga, J. Braun, J. Minár, I. Di Marco, A. Varykhalov, O. Rader, V. Boni, V. Bellini, F. Manghi, H. Ebert, et al., Phys. Rev. B 85, 205109 (2012)ADSCrossRefGoogle Scholar
  81. 81.
    C. Calandra, F. Manghi, Phys. Rev. B 50, 2061 (1994)ADSCrossRefGoogle Scholar
  82. 82.
    A.X. Gray, C. Papp, S. Ueda, B. Balke, Y. Yamashita, L. Plucinski, J. Minár, J. Braun, E.R. Ylvisaker, C.M. Schneider, et al., Nat. Mater. 10, 759 (2011)ADSCrossRefGoogle Scholar
  83. 83.
    C.S. Fadley, Synchrotron Radiation News 25, 26 (2012)CrossRefGoogle Scholar
  84. 84.
    V.N. Strocov, T. Schmitt, U. Flechsig, T. Schmidt, A. Imhof, Q. Chen, J. Raabe, R. Betemps, D. Zimoch, J. Krempasky, et al., J. Synchr. Rad. 17, 631 (2010)CrossRefGoogle Scholar
  85. 85.
    T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    P. Thunström, I. Di Marco, O. Eriksson, Phys. Rev. Lett. 109, 186401 (2012)ADSCrossRefGoogle Scholar
  87. 87.
    I. Di Marco, P. Thunström, M.I. Katsnelson, J. Sadowski, K. Karlsson, S. Lebègue, J. Kanski, O. Eriksson, Nat. Commun. 4, 951 (2013)CrossRefGoogle Scholar
  88. 88.
    K. Sato, L. Bergqvist, J. Kudmovsky, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, et al., Rev. Mod. Phys. 82, 1633 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.New Technologies-Research Center, University of West BohemiaPilsenCzech Republic
  2. 2.Department Chemie, Physikalische Chemie, Universität MünchenMünchenGermany
  3. 3.Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of AugsburgAugsburgGermany
  4. 4.Augsburg Center for Innovative Technologies, University of AugsburgAugsburgGermany

Personalised recommendations