Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1765–1775 | Cite as

A system governed by a set of nonautonomous differential equations with robust strange nonchaotic attractor of Hunt and Ott type

  • Valentina M. DoroshenkoEmail author
  • Sergey P. KuznetsovEmail author
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications

Abstract

A physically realizable nonautonomous system of ring structure is considered, which manifests a robust strange nonchaotic attractor (SNA), similar to the attractor in the map on a torus proposed earlier by Hunt and Ott. Numerical simulation of the dynamics for the corresponding non-autonomous set of differential equations with quasi-periodic coefficients is provided. It is demonstrated that in terms of appropriately chosen phase variables the dynamics is consistent with the topology of the mapping of Hunt and Ott on the characteristic period. It has been shown that the occurrence of SNA agrees with the criterion of Pikovsky and Feudel. Also, the computations confirm that the Fourier spectrum in sustained SNA mode is of intermediate class between the continuous and discrete spectra (the singular continuous spectrum).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Grebogi, E. Ott, S. Pelikan, J.A. Yorke, Physica D 13, 261 (1984)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    U. Feudel, S. Kuznetsov, A. Pikovsky, Strange Nonchaotic Attractors. Dynamics between Order and Chaos in Quasiperiodically Forced Systems (World Scientific, Singapore, 2006), p. 228Google Scholar
  3. 3.
    A. Bondeson, E. Ott, T.M. Antonsen, Phys. Rev. Lett. 55, 2103 (1985)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Ding, C. Grebogi, E. Ott, Phys. Lett. A 137, 167 (1989)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Ding, C. Grebogi, E. Ott, Phys. Rev. A 39, 2593 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Pikovsky, U. Feudel, J. Phys. A: Math. Gen. 27, 5209 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Pikovsky, U. Feudel, Chaos 5, 253 (1995)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.S. Pikovsky, M.A. Zaks, U. Feudel, J. Kurths, Phys. Rev. E 52, 285 (1995)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    U. Feudel, A.S. Pikovsky, J. Kurths, Physica D 88, 176 (1995)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Pokorny, I. Schreiber, M. Marek, Chaos, Solitons and Fractals 7, 409 (1996)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    K. Kaneko, T. Nishikawa, Phys. Rev. E 54, 6114 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    P. Glendinning, Phys. Lett. A 244, 545 (1998)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Osinga, J. Wiersig, P. Glendinning, U. Feudel, Int. J. Bifurc. Chaos 11, 3085 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Prasad, S.S. Negi, R. Ramaswamy, Int. J. Bifurc. Chaos 11, 291 (2001)CrossRefGoogle Scholar
  15. 15.
    B.R. Hunt, E. Ott, Phys. Rev. Lett. 87, 254101 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    J.-W. Kim, S.-Y. Kim, B. Hunt, E. Ott, Phys. Rev. E 67, 036211 (2003)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    S.-Y. Kim, W. Lim, E. Ott, Phys. Rev. E 67, 056203 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    A.Yu. Jalnine, S.P. Kuznetsov, EPL 115, 30004 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    W.L. Ditto, M.L. Spano, H.T. Savage, S.N. Rauseo, J. Heagy, E. Ott, Phys. Rev. Lett. 65, 533 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    S.T. Vohra, F. Bucholtz, K.P. Koo, D.M. Dagenais, Phys. Rev. Lett. 66, 212 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    T. Zhou, F. Moss, A. Bulsara, Phys. Rev. A 45, 5394 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    K.-P. Zeyer, A.F. Miinster, F.W. Schneider, J. Phys. Chem. 99, 13173 (1995)CrossRefGoogle Scholar
  23. 23.
    W.X. Ding, H. Deutsch, A. Dinklage, C. Wilke, Phys. Rev. E 55, 3769 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    T. Yang, K. Bilimgut, Phys. Lett. A 236, 494 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    Y.H. Yu, D.C. Kim, J.Y. Ryu, S.R. Hong, J. Korean Phys. Soc. 34, 130 (1999)Google Scholar
  26. 26.
    B.P. Bezruchko, S.P. Kuznetsov, Y.P. Seleznev, Phys. Rev. E 62, 7828 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    D. Sanchez, G. Platero, L.L. Bonilla, Phys. Rev. B 63, 201306 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    A. Vaszlenko, O. Feely, Int. J. Bifurc. Chaos 12, 1633 (2002)CrossRefGoogle Scholar
  29. 29.
    A.Yu. Jalnine, S.P. Kuznetsov, Tech. Phys. 52, 401 (2007)CrossRefGoogle Scholar
  30. 30.
    G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 9 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    S.P. Kuznetsov, Hyperbolic Chaos: A Physicist’s View (Higher Education Press: Beijing, Springer-Verlag: Berlin, Heidelberg, 2012), p. 336Google Scholar
  32. 32.
    A. Pikovsky, A. Politi, Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge University Press, 2016), p. 285Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia
  2. 2.Kotelnikov Institute of Radio-Engineering and ElectronicsSaratovRussia

Personalised recommendations