The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1883–1892 | Cite as

Chimera states in complex networks: interplay of fractal topology and delay

  • Jakub Sawicki
  • Iryna Omelchenko
  • Anna Zakharova
  • Eckehard Schöll
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications

Abstract

Chimera states are an example of intriguing partial synchronization patterns emerging in networks of identical oscillators. They consist of spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynamics. We analyze chimera states in networks of Van der Pol oscillators with hierarchical connectivities, and elaborate the role of time delay introduced in the coupling term. In the parameter plane of coupling strength and delay time we find tongue-like regions of existence of chimera states alternating with regions of existence of coherent travelling waves. We demonstrate that by varying the time delay one can deliberately stabilize desired spatio-temporal patterns in the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Sys. 5, 380 (2002)Google Scholar
  6. 6.
    D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    N. Semenova, A. Zakharova, E. Schöll, V.S. Anishchenko, Europhys. Lett. 112, 40002 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    T.E. Vadivasova, G. Strelkova, S.A. Bogomolov, V.S. Anishchenko, Chaos 26, 093108 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Omelchenko, B. Riemenschneider, P. Hövel, Y. Maistrenko, E. Schöll, Phys. Rev. E 85, 026212 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Int. J. Bifurc. Chaos 24, 1450030 (2014)CrossRefGoogle Scholar
  13. 13.
    I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Eur. Phys. J. Special Topics 225, 1149 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    D.P. Rosin, D. Rontani, D.J. Gauthier, Phys. Rev. E 89, 042907 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Hizanidis, E. Panagakou, I. Omelchenko, E. Schöll, P. Hövel, A. Provata, Phys. Rev. E 92, 012915 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    T. Banerjee, P.S. Dutta, A. Zakharova, E. Schöll, Phys. Rev. E 94, 032206 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    V. Bastidas, I. Omelchenko, A. Zakharova, E. Schöll, T. Brandes, Phys. Rev. E 92, 062924 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y. Maistrenko, O. Sudakov, Phys. Rev. E 85, 036210 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S.I. Shima, Y. Kuramoto, Phys. Rev. E 69, 036213 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, New J. Phys. 17, 073037 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    A. Vüllings, E. Schöll, B. Lindner, Eur. Phys. J. B 87, 31 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Chaos 25, 083104 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    G.C. Sethia, A. Sen, F.M. Atay, Phys. Rev. Lett. 100, 144102 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    J. Xie, E. Knobloch, H.C. Kao, Phys. Rev. E 90, 022919 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S.W. Haugland, L. Schmidt, K. Krischer, Sci. Rep. 5, 9883 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    G.C. Sethia, A. Sen, G.L. Johnston, Phys. Rev. E 88, 042917 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T. Banerjee, Europhys. Lett. 110, 60003 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    F.P. Kemeth, S.W. Haugland, L. Schmidt, I.G. Kevrekidis, K. Krischer, Chaos 26, 094815 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)CrossRefGoogle Scholar
  33. 33.
    N.C. Rattenborg, B. Voirin, S.M. Cruz, R. Tisdale, G. Dell’Omo, H.P. Lipp, M. Wikelski, A.L. Vyssotski, Nat. Comm. 7, 12486 (2016)CrossRefGoogle Scholar
  34. 34.
    C.R. Laing, C.C. Chow, Neural Comput. 13, 1473 (2001)CrossRefGoogle Scholar
  35. 35.
    H. Sakaguchi, Phys. Rev. E 73, 031907 (2006)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Rothkegel, K. Lehnertz, New J. Phys. 16, 055006 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, Sci. Rep. 6, 23000 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 191 (2013)CrossRefGoogle Scholar
  39. 39.
    J.C. Gonzalez-Avella, M.G. Cosenza, M.S. Miguel, Physica A 399, 24 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)CrossRefGoogle Scholar
  41. 41.
    M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Nkomo, M.R. Tinsley, K. Showalter, Phys. Rev. Lett 110, 244102 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    E.A. Martens, S. Thutupalli, A. Fourriere, O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    T. Kapitaniak, P. Kuzma, J. Wojewoda, K. Czolczynski, Y. Maistrenko, Sci. Rep. 4, 6379 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    L. Larger, B. Penkovsky, Y. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    L.V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Phys. Rev. E 90, 032905 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    L. Larger, B. Penkovsky, Y. Maistrenko, Nat. Commun. 6, 7752 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    M. Wickramasinghe, I.Z. Kiss, PLoS ONE 8, e80586 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    L. Schmidt, K. Schönleber, K. Krischer, V. Garcia-Morales, Chaos 24, 013102 (2014)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    E.A. Viktorov, T. Habruseva, S.P. Hegarty, G. Huyet, B. Kelleher, Phys. Rev. Lett. 112, 224101 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Phys. Rev. E 91, 040901 (R) (2015)CrossRefGoogle Scholar
  53. 53.
    L. Schmidt, K. Krischer, Phys. Rev. Lett. 114, 034101 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    L. Schmidt, K. Krischer, Chaos 25, 064401 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    T.W. Ko, G.B. Ermentrout, Phys. Rev. E 78, 016203 (2008)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    S. Ulonska, I. Omelchenko, A. Zakharova, E. Schöll, Chaos 26, 094825 (2016)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    S. Loos, J.C. Claussen, E. Schöll, A. Zakharova, Phys. Rev. E 93, 012209 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    V. Semenov, A. Zakharova, Y. Maistrenko, E. Schöll, EPL 115, 10005 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    N. Semenova, A. Zakharova, V.S. Anishchenko, E. Schöll, Phys. Rev. Lett. 117, 014102 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    A. Zakharova, N. Semenova, V.S. Anishchenko, E. Schöll, Springer Proceedings in Mathematics and Statistics, arXiv:1611.03432v1 (2017)
  62. 62.
    P. Katsaloulis, D.A. Verganelakis, A. Provata, Fractals 17, 181 (2009)CrossRefGoogle Scholar
  63. 63.
    P. Expert, T.S. Evans, V.D. Blondel, R. Lambiotte, PNAS 108, 7663 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    P. Katsaloulis, A. Ghosh, A.C. Philippe, A. Provata, R. Deriche, Eur. Phys. J. B 85, 150 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    P. Katsaloulis, J. Hizanidis, D.A. Verganelakis, A. Provata, Fluct. Noise Lett. 11, 1250032 (2012)CrossRefGoogle Scholar
  66. 66.
    A. Provata, P. Katsaloulis, D.A. Verganelakis, Chaos Solitons Fractals 45, 174 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    J. Sieber, O.E. Omel’chenko, M. Wolfrum, Phys. Rev. Lett. 112, 054102 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    C. Bick, E.A. Martens, New J. Phys. 17, 033030 (2015)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    I. Omelchenko, O.E. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Phys. Rev. Lett. 116, 114101 (2016)ADSCrossRefGoogle Scholar
  70. 70.
    A. Sen, R. Dodla, G. Johnston, G.C. Sethia, in Complex Time-Delay Systems, edited by F.M. Atay (Springer, Berlin, 2010), Vol. 16 of Understanding Complex Systems, pp. 1–43Google Scholar
  71. 71.
    R. Ma, J. Wang, Z. Liu, EPL 91, 40006 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    J.H. Sheeba, V.K. Chandrasekar, M. Lakshmanan, Phys. Rev. E 79, 055203 (2009)ADSCrossRefGoogle Scholar
  73. 73.
    J.H. Sheeba, V.K. Chandrasekar, M. Lakshmanan, Phys. Rev. E 81, 046203 (2010)ADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    S. Watanabe, S.H. Strogatz, Phys. Rev. Lett. 70, 2391 (1993)ADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    S.M. Crook, G.B. Ermentrout, M.C. Vanier, J.M. Bower, J. Comput. Neurosci. 4, 161 (1997)CrossRefGoogle Scholar
  76. 76.
    B.B. Mandelbrot, The Fractal Geometry of Nature, 3rd edn. (W.H. Freeman and Comp., New York, 1983)Google Scholar
  77. 77.
    J. Feder, Fractals (Plenum Press, New York, 1988)Google Scholar
  78. 78.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  79. 79.
    P. Hövel, E. Schöll, Phys. Rev. E 72, 046203 (2005)CrossRefGoogle Scholar
  80. 80.
    S. Yanchuk, M. Wolfrum, P. Hövel, E. Schöll, Phys. Rev. E 74, 026201 (2006)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jakub Sawicki
    • 1
  • Iryna Omelchenko
    • 1
  • Anna Zakharova
    • 1
  • Eckehard Schöll
    • 1
  1. 1.Institut für Theoretische Physik, Technische Universität BerlinBerlinGermany

Personalised recommendations