The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 2135–2144 | Cite as

Mixotrophy and intraguild predation – dynamic consequences of shifts between food web motifs

Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications

Abstract

Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, 2001)Google Scholar
  2. 2.
    K. Bar-Eli, J. Phys. Chem. 88, 3616 (1984)CrossRefGoogle Scholar
  3. 3.
    U. Feudel, Int. J. Bifurc. Chaos 18, 1607 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    G. Ansmann, R. Karnatak, K. Lehnertz, U. Feudel, Phys. Rev. E 88, 052911 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R. Albert, A.-L. Barabási, Phys. Rev. E 88, 052911 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    I. Farkas, I. Derényi, H. Jeong, Z.Nédac, Z.N. Oltvai, E. Ravaszc, A. Schubert, A.-L Barabási, T. Vicsek, Physica A 314, 25 (2002)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)Google Scholar
  9. 9.
    S. Bornholdt, H.G. Schuster (Eds.) Handbook of Graphs and Networks: From the Genome to the Internet (John Wiley & Sons, 2003)Google Scholar
  10. 10.
    R. Albert, A.-L. Barabási, T. Vicsek, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Masoudi-Nejad, F. Schreiber, Z.R.M. Kashani, IET Syst. Biol. 6, 164 (2012)CrossRefGoogle Scholar
  12. 12.
    R.M. May, Ecology 67, 1115 (1986)CrossRefGoogle Scholar
  13. 13.
    S.L. Pimm, J.H. Lawton, J.E. Cohen, Nature 250, 669 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    S.A. Levin, Ecology 73, 1943 (1992)CrossRefGoogle Scholar
  15. 15.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    J.A. Dunne, R.J. Williams, N.D. Martinez, Proc. Natl. Acad. Sci. 99, 12917 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Pimm, J.H. Lawton, Nature 275, 542 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    R.D. Holt, G.A. Polis, Am. Naturalist 149, 745 (1997)CrossRefGoogle Scholar
  19. 19.
    K. McCann, A. Hastings, Proc. Biol. Sci. 264, 1249 (1997)CrossRefGoogle Scholar
  20. 20.
    R. Karnatak, R. Ramaswamy, U. Feudel, Chaos, Solitons Fractals 68, 48 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    S. Rinaldi, O. De Feo, Ecol. Lett. 2, 6 (1999)CrossRefGoogle Scholar
  22. 22.
    P.V. Paulau, C. Feenders, B. Blasius, Sci. Rep. 5, 11926 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    B. Baiser, R. Elhesha, T. Kahveci, Oikos 125, 480 (2016)CrossRefGoogle Scholar
  24. 24.
    G.A. Polis, C.A. Myers, R.D. Holt, Annu. Rev. Ecol. Syst. 20, 1 (1989)CrossRefGoogle Scholar
  25. 25.
    A.C. Hammer, J.W. Pitchford, ICES J. Mar. Sci. 62, 833 (2005)CrossRefGoogle Scholar
  26. 26.
    J.M. Burkholder, P.M. Glibert, H.M. Skelton, Harmful Algae 8, 77 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Wilken, J.M.H. Verspagen, S.N.-Wiezer, E. Van Donk, J. Huisman, Oikos 123, 423 (2014)CrossRefGoogle Scholar
  28. 28.
    C.S. Holling, The Canada Entomologist 91, 293 (1959)CrossRefGoogle Scholar
  29. 29.
    C.S. Holling, The Canada Entomologist 91, 385 (1959)CrossRefGoogle Scholar
  30. 30.
    G.D. Byrne, S. Thompson, http://www.radford.edu/thompson/vodef90web/index.html (2013 version)
  31. 31.
    P.N. Brown, G.D. Byrne, A.C. Hindmarsh, SIAM J. Sci. Stat. Comput. 10, 1038 (1989)CrossRefGoogle Scholar
  32. 32.
    M. Rosenzweig, Science 171, 385 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    K. McCann, A. Hastings, G.R. Huxel, Nature 395, 794 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    D. Ritterskamp, C. Feenders, D. Bearup, B. Blasius, Theor. Ecol. 9, 501 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Diehl, M. Feissel, Am. Naturalist 155, 200 (2000)Google Scholar
  36. 36.
    R.W. Sanders, J. Protozoology 38, 76 (1991)CrossRefGoogle Scholar
  37. 37.
    R.I. Jones, Freshwater Biol. 45, 219 (2000)CrossRefGoogle Scholar
  38. 38.
    B.A. Ward, M.J. Follows, Proc. Natl. Acad. Sci. 113, 2958 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    S. Wilken, J. Huisman, S.N.-Wiezer, E. Van, Donk, Ecol. Lett. 16, 225 (2013)CrossRefGoogle Scholar
  40. 40.
    N.N. Rabalais, R.E. Turner, R.J. Diaz, D. Justić, J. Mar. Sci. 66, 1528 (2009)Google Scholar
  41. 41.
    D.M. Andreson, P.M. Gilbert, J.M. Burkholder, Estuaries 25, 704 (2002)CrossRefGoogle Scholar
  42. 42.
    C.E Williamson, W. Dodds, T.K. Kratz, M.A. Palmer, Front. Ecol. Environ. 6, 247 (2008)CrossRefGoogle Scholar
  43. 43.
    F.R. Vasconcelos, S. Diehl, P. Rodríguez, P. Hedström, J. Karlsson, P. Byström, Ecology 97, 2580 (2016)CrossRefGoogle Scholar
  44. 44.
    K.E. Strock, J.E. Saros, S.J. Nelson, S.D. Birkel, J.S. Kahl, W.H. McDowell, Biogeochemistry 127, 353 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Arvola, C. Äijälä, M. Leppäranta, Hydrobiologia 780, 37 (2016)CrossRefGoogle Scholar
  46. 46.
    A.P. Allen, J.F. Gillooly, J.H. Brown, Funct. Ecol. 19, 202 (2005)CrossRefGoogle Scholar
  47. 47.
    Á.L.-Urrutia, E. San Martin, R.P. Harris, X.Irigoien, Proc. Natl. Acad. Sci. 103, 8739 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    C.B. Müller, J. Brodeur, Biol. Control 25, 216 (2002)CrossRefGoogle Scholar
  49. 49.
    D.R. Hart, J. Theor. Biol. 218, 111 (2002)CrossRefGoogle Scholar
  50. 50.
    K.W. Crane, J.P. Grover, J. Theor. Biol. 262, 517 (2010)CrossRefGoogle Scholar
  51. 51.

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Leibniz – Institute of Freshwater Ecology and Inland FisheriesBerlinGermany

Personalised recommendations