Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1777–1784 | Cite as

Transient chaos in multidimensional Hamiltonian system with weak dissipation

  • E. V. FelkEmail author
  • A. V. Savin
  • A. P. Kuznetsov
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications

Abstract

The dynamics of two coupled twist maps with weak dissipation is studied. The calculation of Lyapunov exponents is used to analyze the structure of the action plane of the system. The chaotic transient dynamics is revealed for extremely small values of dissipation by calculation of finite-time Lyapunov exponents. The stagger-and-step method is used to obtain the chaotic saddle and it is found that it is similar to the Arnold web.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Woltering, M. Markus, Phys. Rev. Lett. 84, 630 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    M. Dhamala, Y.-C. Lai, Phys. Rev. E. 60, 6176 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    M. Dhamala, Y.-C. Lai, E.J. Kostelich, Phys. Rev. E. 61, 6485 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    M. Dhamala, Y.C. Lai, Phys. Rev. E 59, 1646 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    H.W. Yin, J.H. Dai, H.J. Zhang, Phys. Rev. E 54, 371 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. Koronovsky, I. Rempen, D. Trubetskov, A. Hramov, Izvestia akademii nauk seria fizicheskaya 66, 1754 (2002)Google Scholar
  7. 7.
    L. Chen, K. Aihara, Neural Networks 8, 915 (1995)CrossRefGoogle Scholar
  8. 8.
    P.V. Coveney, A.N. Chaudry, J. Chem. Phys. 97, 7448 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    R.W. White, Environment and Planning A 22, 1309 (1990)CrossRefGoogle Scholar
  10. 10.
    Y.-C. Lai, K. Zyczkowski, C. Grebogi, Phys. Rev. E 59, 5261 (1999)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    S. Kraut, U. Feudel, Phys. Rev. 66, 015207 (2002)ADSMathSciNetGoogle Scholar
  12. 12.
    Y.-C. Lai, T. Tel, Transient Chaos: Complex Dynamics on Finite Time Scales (Springer, New York, 2011), Vol. 173 Google Scholar
  13. 13.
    J.L. Kaplan, J.A. Yorke, Comm. Math. Phys. 67, 93 (1979)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L.A. Bunimovich, Nonlinearity 27, 51 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 48, 1507 (1982)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Kantz, P. Grassberger, Physica D 17, 75 (1985)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    G.H. Hsu, E. Ott, C. Grebogi, Phys. Lett. A 127, 199 (1988)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    V.I. Arnol’d, Sov. Math. 5, 581 (1964)Google Scholar
  19. 19.
    G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov, A.A. Chernikov, Weak Chaos and Quasi-Regular Patterns (Cambridge University Press, Cambridge, 1991) p. 265Google Scholar
  20. 20.
    G.M. Zaslavsky, Physics of Chaos in Hamiltonian Dynamics (Imperial College Press, London, 1998) p. 350Google Scholar
  21. 21.
    A.P. Kuznetsov, A.V. Savin, D.V. Savin, Physica A 387, 1464 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Savin, D.V. Savin, arXiv:1302.5361[nlin.CD]
  23. 23.
    E.V. Felk, A.P. Kuznetsov, A.V. Savin, Physica A 410, 561 (2014)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    U. Feudel, C. Grebogi, B.R. Hunt, J.A. Yorke, Phys. Rev. 54, 71 (1996)ADSMathSciNetGoogle Scholar
  25. 25.
    U. Feudel, C. Grebogi, Phys. Rev. Lett. 91, 134102 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    M. Tabor, in Chaos and Integrability in Nonlinear Dynamics (Wiley, New York, 1989) p. 364Google Scholar
  27. 27.
    L.E. Reichl, The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations (Springer-Verlag, Berlin, 1992)Google Scholar
  28. 28.
    K. Froeschle, E. Lega, M. Guzzo, Mechanics and Dynamical Astronomy 95, 141 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M. Guzzo, E. Lega, K. Froeschle, arXiv:nlin/0407059[nlin.CD]
  30. 30.
    G. Benettin, L. Galgani, J.M. Strelcyn, Phys. Rev. 14, 2338 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    D. Sweet, H.E. Nusse, J.A. Yorke, Phys. Rev. Lett. 86, 2261 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Saratov State UniversitySaratovRussia
  2. 2.Saratov Branch of the Institute of Radio-Engineering and Electronics of RASSaratovRussia

Personalised recommendations