Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1987–1995 | Cite as

Stability mosaics in a forced Brusselator

Auto-organization of oscillations in control parameter space
  • Joana G. Freire
  • Marcia R. Gallas
  • Jason A. C. Gallas
Open Access
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications

Abstract

We report a startling mosaic-like organization of stability phases found in the low-frequency limit of a driven Brusselator. Such phases correspond to periodic oscillations having a constant number of spikes per period. The mosaic is free from chaotic oscillations and is formed by an apparently infinite cascade of oscillations whose number of spikes grow without bound. Wide windows free from chaos but supporting unbounded quantities of complex oscillations are potentially of interest to operate driven oscillators such as lasers, electronic circuits, and biochemical pacemakers.

References

  1. 1.
    E.N. Lorenz, J. Atmos. Sci. 49, 2449 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    J. Argyris, G. Faust, M. Haase, R. Friedrich, An Exploration of Dynamical Systems and Chaos, 2nd edn. (Springer, New York, 2015)Google Scholar
  3. 3.
    S. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, 2nd Edition, (Westview Press, Boulder, 2015)Google Scholar
  4. 4.
    J.A.C. Gallas, Mod. Phys. Lett. B 29, 1530018 (2015). Chapter in Peregrinations from Physics to Phylogeny: Essays on the Occasion of Hao Bailin’s 80 Birthday, Edited by K.K. Phua, M. Ge (World Scientific, Singapore, 2016)Google Scholar
  5. 5.
    R. Kremann, Die periodischen Erscheinungen in der Chemie (F. Enke Verlag, Stuttgart, 1913)Google Scholar
  6. 6.
    E.S. Hedges, J.E. Myers, The Problem of Physico-Chemical Periodicity (Arnold & Co, London, 1926)Google Scholar
  7. 7.
    A. Lotka, Z. Phys. Chem. 72, 508 (1910)Google Scholar
  8. 8.
    J. Hirniak, Z. Phys. Chem. 75, 675 (1910)Google Scholar
  9. 9.
    A.J. Lotka, Z. Phys. Chem. 80, 159 (1912)CrossRefGoogle Scholar
  10. 10.
    D. Aubin, A.D. Dalmedico, Hist. Math. 29, 273 (2002)CrossRefGoogle Scholar
  11. 11.
    K. Tomita, T. Kai, F. Hikami, Prog. Theor. Phys. 57, 1159 (1977)ADSCrossRefGoogle Scholar
  12. 12.
    C. Knudsen, J. Sturis, J.S. Thomsen, Phys. Rev. A 44, 3503 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    K. Tomita, Phys. Rep. 86, 113 (1982)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    B.L. Hao, Elementary Symbolic Dynamics and Chaos in Dissipative Dynamical Systems (World Scientific, Singapore, 1989)Google Scholar
  15. 15.
    B.-L. Hao, W.-M. Zheng, Applied Symbolic Dynamics and Chaos (World Scientific, Singapore, 1989)Google Scholar
  16. 16.
    B. Hao, W. Zheng, Applied Symbolic Dynamics and Chaos, 2nd revised edn. (Peking University Press, Beijing, 2014)Google Scholar
  17. 17.
    J.A.C. Gallas, Adv. Atom. Mol. Opt. Phys. 65, 127 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    L. Junges, J.A.C. Gallas, J. Opt. Soc. Am. B 33, 373 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J.G. Freire, R. Meucci, F.T. Arecchi, J.A.C. Gallas, Chaos 25, 097607 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    L. Junges, J.A.C. Gallas, Opt. Comm. 285, 4500 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L. Junges, J.A.C. Gallas, New J. Phys. 17, 053038 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    J.G. Freire, J.A.C. Gallas, Phys. Chem. Chem. Phys. 13, 12191 (2011)CrossRefGoogle Scholar
  23. 23.
    J.G. Freire, J.A.C. Gallas, Phys. Lett. A 375, 1097 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M.R. Gallas, M.R. Gallas, J.A.C. Gallas, Eur. Phys. J. Special Topics 223, 2131 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    A. Sack, J.G. Freire, E. Lindberg, T. Pöschel, J.A.C. Gallas, Sci. Rep. 3, 03350 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    E. Pugliese, R. Meucci, S. Euzzor, J.G. Freire, J.A.C. Gallas, Sci. Rep. 5, 08447 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    J.G. Freire, R.J. Field, J.A.C. Gallas, J. Chem. Phys. 131, 044105 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Nascimento, J.A.C. Gallas, H. Varela, Phys. Chem. Chem. Phys. 13, 441 (2011)CrossRefGoogle Scholar
  29. 29.
    J.G. Freire, C. Cabeza, A. Marti, T. Pöschel, J.A.C. Gallas, Sci. Rep. 3, 1958 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J.G. Freire, C. Cabeza, A. Marti, T. Pöschel, J.A.C. Gallas, Eur. Phys. J. Special Topics 223, 2857 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    V. Kovanis, A. Gavrielides, J.A.C. Gallas Eur. Phys. J. D 58, 181 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M.J.B. Hauser, J.A.C. Gallas, J. Phys. Chem. Lett. 5, 4187 (2014)CrossRefGoogle Scholar
  33. 33.
    M.R. Gallas, J.A.C. Gallas, Chaos 25, 064603 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    R.J. Field, J.A.C. Gallas, D. Schuldberg, Comm. Nonlin. Sci. Num. Sim. 49, 135 (2017)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Joana G. Freire
    • 1
    • 2
  • Marcia R. Gallas
    • 1
    • 2
    • 3
    • 4
  • Jason A. C. Gallas
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Instituto de Altos Estudos da Paraíba, Rua Silvino Lopes 419-2502João PessoaBrazil
  2. 2.Departamento de Física, Universidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Complexity Sciences CenterSurfsideUSA
  4. 4.Institute for Multiscale Simulations, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  5. 5.Max-Planck-Institut für Physik komplexer SystemeDresdenGermany

Personalised recommendations