The European Physical Journal Special Topics

, Volume 226, Issue 10, pp 2191–2204 | Cite as

Dynamical complexity of short and noisy time series

Compression-Complexity vs. Shannon entropy
  • Nithin NagarajEmail author
  • Karthi BalasubramanianEmail author
Regular Article
Part of the following topical collections:
  1. Aspects of Statistical Mechanics and Dynamical Complexity


Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)CrossRefGoogle Scholar
  2. 2.
    M. Borowska, Studies in Logic, Grammar and Rhetoric 43, 21 (2015)Google Scholar
  3. 3.
    A. Porta, S. Guzzetti, N. Montano, R. Furlan, M. Pagani, A. Malliani, S. Cerutti, IEEE Trans. Biomed. Eng. 48, 1282 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Li, Y. Pan, IEEE Trans. Inf. Theory 62, 3290 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002 (IEEE, 2002), p. 209Google Scholar
  6. 6.
    S. Vinga, Briefings in bioinformatics, bbt068 (2013)Google Scholar
  7. 7.
    B.J. Strait, T.G. Dewey, Biophys. J. 71, 148 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    A. Golan, E. Maasoumi, Econometric Rev. 27, 317 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Zhou, R. Cai, G. Tong, Entropy 15, 4909 (2013)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Fiedor, Phys. Rev. E 89, 052801 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C. Tsallis, Chaos, Solitons & Fractals 13, 371 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Gersch, D.M. Eddy, E. Dong Jr, Comp. Biomed. Res. 3, 385 (1970)CrossRefGoogle Scholar
  13. 13.
    D. Coast, R.M. Stern, G.G. Cano, S. Briller, et al., IEEE Trans. Biomed. Eng. 37, 826 (1990)CrossRefGoogle Scholar
  14. 14.
    W. Gersch, P. Lilly, E. Dong, Comp. Biomed. Res. 8, 370 (1975)CrossRefGoogle Scholar
  15. 15.
    S.-T. Pan, Y.-H. Wu, Y.-L. Kung, H.-C. Chen, in Proceedings of the 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), p. 586 (2013)Google Scholar
  16. 16.
    M.S. Waterman, Mathematical Methods for DNA Sequences (CRC Press Inc., 1989)Google Scholar
  17. 17.
    T.-J. Wu, Y.-C. Hsieh, L.-A. Li, Biometrics 57, 441 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    I. Sergienko, A. Gupal, A. Ostrovsky, Cybernetics Syst. Anal. 48, 369 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Narlikar, N. Mehta, S. Galande, M. Arjunwadkar, Nucl. Acids Res. 41, 1416 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Varga, R. Moore, in Proceedings of the International Conference on Acoustics, Speech and Signal (ICASSP), p. 845 (1990)Google Scholar
  21. 21.
    B.H. Juang, L.R. Rabiner, Technometrics 33, 251 (1991)MathSciNetCrossRefGoogle Scholar
  22. 22.
    H. Veisi, H. Sameti, Speech Commun. 55, 205 (2013)CrossRefGoogle Scholar
  23. 23.
    R.P. Rao, N. Yadav, M.N. Vahia, H. Joglekar, R. Adhikari, I. Mahadevan, Proc. Nat. Acad. Sci. 106, 13685 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    R.P. Rao, IEEE Comp. 43, 76 (2010)CrossRefGoogle Scholar
  25. 25.
    G.A. Fink, Markov Models for Pattern Recognition: From Theory to Applications (Springer Science & Business Media, 2014)Google Scholar
  26. 26.
    G.V. Cormack, R. Horspool, Comp. J. 30, 541 (1987)CrossRefGoogle Scholar
  27. 27.
    H.S. Wang, N. Moayeri, IEEE Trans. Veh. Technol. 44, 163 (1995)CrossRefGoogle Scholar
  28. 28.
    H. Zhou, J. Bruck, IEEE Trans. Inf. Theory 58, 2490 (2012)CrossRefGoogle Scholar
  29. 29.
    M. Svoboda, L. Lukas, in Proceedings of 30th International Conference Mathematical Methods in Economics (Silesian University, School of Business Administration, Karviná, 2012), p. 848Google Scholar
  30. 30.
    F.O. Mettle, E.N.B. Quaye, R.A. Laryea, SpringerPlus 3, 1 (2014)CrossRefGoogle Scholar
  31. 31.
    K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos (Springer, 1997)Google Scholar
  32. 32.
    R. Cilibrasi, Statistical inference through data compression, Ph.D. Thesis, University of Amsterdam, 2007Google Scholar
  33. 33.
    A. Lempel, J. Ziv, IEEE Trans. Inf. Theory 22, 75 (1976)CrossRefGoogle Scholar
  34. 34.
    J. Ziv, A. Lempel, IEEE Trans. Inf. Theory 23, 337 (1977)CrossRefGoogle Scholar
  35. 35.
    M. Aboy, R. Hornero, D. Abásolo, D. Álvarez, IEEE Trans. Biomed. Eng. 53, 2282 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Hu, J. Gao, J.C. Principe, IEEE Trans. Biomed. Eng. 53, 2606 (2006)CrossRefGoogle Scholar
  37. 37.
    J.M. Amigó, J. Szczepański, E. Wajnryb, M.V. Sanchez-Vives, Neural Comput. 16, 717 (2004)CrossRefGoogle Scholar
  38. 38.
    S. Zozor, P. Ravier, O. Buttelli, Physica A 345, 285 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    S. Shinkai, Y. Aizawa, Prog. Theory Phys. 116, 503 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    H.H. Otu, K. Sayood, Bioinformatics 19, 2122 (2003)CrossRefGoogle Scholar
  41. 41.
    V.D. Gusev, L.A. Nemytikova, N.A. Chuzhanova, Bioinformatics 15, 994 (1999)CrossRefGoogle Scholar
  42. 42.
    S. Azhar, G.J. Badros, A. Glodjo, M.-Y. Kao, J.H. Reif, in Proceedings of the Conference on Data Compression, 1994 (DCC’94) (IEEE, 1994), p. 72Google Scholar
  43. 43.
    R. Giglio, R. Matsushita, S. Da Silva, Econ. Bull. 7, 1 (2008)Google Scholar
  44. 44.
    N. Nagaraj, K. Balasubramanian, S. Dey, Eur. Phys. J. Special Topics 222, 847 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    W. Ebeling, M.A. Jiménez-Montaño, Math. Biosci. 52, 53 (1980)CrossRefGoogle Scholar
  46. 46.
    K. Balasubramanian, N. Nagaraj, PeerJ 4, e2755 (2016)CrossRefGoogle Scholar
  47. 47.
    M. Talebinejad, G. Tsoulfas, S. Musallam, in Proc. Canadian Med. Biol. Engg. (2011)Google Scholar
  48. 48.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, 2012)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science CampusBengaluruIndia
  2. 2.Department of Electronics and Communication EngineeringAmrita School of Engineering, Amrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia

Personalised recommendations